GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them.

For example, GCD of 20 and 28 is 4 and GCD of 98 and 56 is 14.
A simple and old approach is the Euclidean algorithm by subtraction
It is a process of repeat subtraction, carrying the result forward each time until the result is equal to any one number being subtracted. If the answer is greater than 1, there is a GCD (besides 1). If the answer is 1, there is no common divisor (besides 1), and so both numbers are coprime
pseudo code for the above approach:
def gcd(a, b):
if a == b:
return a
if a > b:
gcd(a – b, b)
else:
gcd(a, b – a)
At some point, one number becomes factor of the other so instead of repeatedly subtracting till both become equal, we check if it is factor of the other.
For Example, suppose a=98 & b=56 a>b so put a= a-b and b remains same. So a=98-56=42 & b= 56 . Since b>a, we check if b%a==0. since answer is no we proceed further. Now b>a so b=b-a and a remain same. So b= 56-42 = 14 & a= 42 . Since a>b, we check if a%b==0 . Now the answer is yes. So we print smaller among a and b as H.C.F . i.e. 42 is 3 times of 14 so HCF is 14.
likewise when a=36 & b=60 ,here b>a so b = 24 & a= 36 but a%b!=0. Now a>b so a= 12 & b= 24 . and b%a==0. smaller among a and b is 12 which becomes HCF of 36 and 60.
Simple Solution :
Approach: For finding the GCD of two numbers we will first find the minimum of the two numbers and then find the highest common factor of that minimum which is also the factor of the other number.
C++
#include <iostream>
using namespace std;
int gcd( int a, int b)
{
int result = min(a, b);
while (result > 0) {
if (a % result == 0 && b % result == 0) {
break ;
}
result--;
}
return result;
}
int main()
{
int a = 98, b = 56;
cout << "GCD of " << a << " and " << b << " is "
<< gcd(a, b);
return 0;
}
|
C
#include <math.h>
#include <stdio.h>
int gcd( int a, int b)
{
int result = ((a < b) ? a : b);
while (result > 0) {
if (a % result == 0 && b % result == 0) {
break ;
}
result--;
}
return result;
}
int main()
{
int a = 98, b = 56;
printf ( "GCD of %d and %d is %d " , a, b, gcd(a, b));
return 0;
}
|
Java
import java.io.*;
public class GFG {
static int gcd( int a, int b)
{
int result = Math.min(a, b);
while (result > 0 ) {
if (a % result == 0 && b % result == 0 ) {
break ;
}
result--;
}
return result;
}
public static void main (String[] args)
{
int a = 98 , b = 56 ;
System.out.print( "GCD of " + a + " and " + b + " is " + gcd(a, b));
}
}
|
Python3
def gcd(a, b):
result = min (a, b)
while result:
if a % result = = 0 and b % result = = 0 :
break
result - = 1
return result
a = 98
b = 56
print (f "GCD of {a} and {b} is {gcd(a, b)}" )
|
C#
using System;
public class GFG
{
static int gcd( int a, int b)
{
int result = Math.Min(a, b);
while (result > 0) {
if (a % result == 0 && b % result == 0) {
break ;
}
result--;
}
return result;
}
public static void Main ( string [] args)
{
int a = 98, b = 56;
Console.WriteLine( "GCD of " + a + " and " + b + " is " + gcd(a, b));
}
}
|
Javascript
<script>
function gcd(a,b)
{
let result = Math.min(a, b);
while (result > 0) {
if (a % result == 0 && b % result == 0) {
break ;
}
result--;
}
return result;
}
let a = 98;
let b = 56;
console.log( "GCD of " ,a, " and " ,b, " is " ,gcd(a, b));
</script>
|
OutputGCD of 98 and 56 is 14
Time Complexity : O(min(a,b))
Auxiliary Space: O(1)
An efficient solution is to use Euclidean algorithm which is the main algorithm used for this purpose. The idea is, GCD of two numbers doesn’t change if a smaller number is subtracted from a bigger number.
C++
#include <iostream>
using namespace std;
int gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (a > b)
return gcd(a-b, b);
return gcd(a, b-a);
}
int main()
{
int a = 98, b = 56;
cout<< "GCD of " <<a<< " and " <<b<< " is " <<gcd(a, b);
return 0;
}
|
C
#include <stdio.h>
int gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (a > b)
return gcd(a-b, b);
return gcd(a, b-a);
}
int main()
{
int a = 98, b = 56;
printf ( "GCD of %d and %d is %d " , a, b, gcd(a, b));
return 0;
}
|
Java
import java.io.*;
class Test
{
static int gcd( int a, int b)
{
if (a == 0 )
return b;
if (b == 0 )
return a;
if (a == b)
return a;
if (a > b)
return gcd(a-b, b);
return gcd(a, b-a);
}
public static void main(String[] args)
{
int a = 98 , b = 56 ;
System.out.println( "GCD of " + a + " and " + b + " is " + gcd(a, b));
}
}
|
Python3
def gcd(a, b):
if (a = = 0 ):
return b
if (b = = 0 ):
return a
if (a = = b):
return a
if (a > b):
return gcd(a - b, b)
return gcd(a, b - a)
a = 98
b = 56
if (gcd(a, b)):
print ( 'GCD of' , a, 'and' , b, 'is' , gcd(a, b))
else :
print ( 'not found' )
|
C#
using System;
class GFG {
static int gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (a > b)
return gcd(a - b, b);
return gcd(a, b - a);
}
public static void Main()
{
int a = 98, b = 56;
Console.WriteLine( "GCD of "
+ a + " and " + b + " is "
+ gcd(a, b));
}
}
|
PHP
<?php
function gcd( $a , $b )
{
if ( $a == 0)
return $b ;
if ( $b == 0)
return $a ;
if ( $a == $b )
return $a ;
if ( $a > $b )
return gcd( $a - $b , $b ) ;
return gcd( $a , $b - $a ) ;
}
$a = 98 ;
$b = 56 ;
echo "GCD of $a and $b is " , gcd( $a , $b ) ;
?>
|
Javascript
<script>
function gcd(a, b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (a > b)
return gcd(a-b, b);
return gcd(a, b-a);
}
let a = 98, b = 56;
document.write( "GCD of " + a + " and " + b + " is " + gcd(a, b));
</script>
|
OutputGCD of 98 and 56 is 14
Time Complexity: O(min(a,b))
Auxiliary Space: O(min(a,b))
Approach (Top Down Using Memoization) :
C++
#include <bits/stdc++.h>
using namespace std;
int static dp[1001][1001];
int gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (dp[a][b] != -1)
return dp[a][b];
if (a > b)
dp[a][b] = gcd(a-b, b);
else
dp[a][b] = gcd(a, b-a);
return dp[a][b];
}
int main()
{
int a = 98, b = 56;
memset (dp, -1, sizeof (dp));
cout<< "GCD of " <<a<< " and " <<b<< " is " <<gcd(a, b);
return 0;
}
|
Java
import java.util.*;
import java.io.*;
public class GFG
{
static int [][]dp = new int [ 1001 ][ 1001 ];
static int gcd( int a, int b)
{
if (a == 0 )
return b;
if (b == 0 )
return a;
if (a == b)
return a;
if (dp[a][b] != - 1 )
return dp[a][b];
if (a > b)
dp[a][b] = gcd(a-b, b);
else
dp[a][b] = gcd(a, b-a);
return dp[a][b];
}
public static void main(String[] args)
{
for ( int i = 0 ; i < 1001 ; i++) {
for ( int j = 0 ; j < 1001 ; j++) {
dp[i][j] = - 1 ;
}
}
int a = 98 , b = 56 ;
System.out.println( "GCD of " + a + " and " + b + " is " + gcd(a, b));
}
}
|
Python3
dp = [[ - 1 for i in range ( 1001 )] for j in range ( 1001 )]
def gcd(a,b):
if (a = = 0 ):
return b
if (b = = 0 ):
return a
if (a = = b):
return a
if (dp[a][b] ! = - 1 ):
return dp[a][b]
if (a > b):
dp[a][b] = gcd(a - b, b)
else :
dp[a][b] = gcd(a, b - a)
return dp[a][b]
a = 98
b = 56
if (gcd(a, b)):
print ( 'GCD of' , a, 'and' , b, 'is' , gcd(a, b))
else :
print ( 'not found' )
|
C#
using System;
class GFG
{
static int [,]dp = new int [1001, 1001];
static int gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (dp[a, b] != -1)
return dp[a, b];
if (a > b)
dp[a, b] = gcd(a-b, b);
else
dp[a, b] = gcd(a, b-a);
return dp[a, b];
}
public static void Main()
{
for ( int i = 0; i < 1001; i++) {
for ( int j = 0; j < 1001; j++) {
dp[i, j] = -1;
}
}
int a = 98, b = 56;
Console.Write( "GCD of " + a + " and " + b + " is " + gcd(a, b));
}
}
|
Javascript
var dp = new Array(1001);
for ( var i = 0; i < dp.length; i++) {
dp[i] = new Array(1001);
}
function gcd(a, b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (dp[a][b] != -1)
return dp[a][b];
if (a > b)
dp[a][b] = gcd(a-b, b);
else
dp[a][b] = gcd(a, b-a);
return dp[a][b];
}
let a = 98, b = 56;
for (let i = 0; i < 1001; i++) {
for (let j = 0; j < 1001; j++) {
dp[i][j] = -1;
}
}
document.write( "GCD of " + a + " and " + b + " is " + gcd(a, b));
</script>
|
OutputGCD of 98 and 56 is 14
Time Complexity: O(min(a,b))
Auxiliary Space: O(1)
Instead of the Euclidean algorithm by subtraction, a better approach is present. We don’t perform subtraction here. we continuously divide the bigger number by the smaller number. More can be learned about this efficient solution by using modulo operator in Euclidean algorithm.
C++
#include <iostream>
using namespace std;
int gcd( int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
}
int main()
{
int a = 98, b = 56;
cout<< "GCD of " <<a<< " and " <<b<< " is " <<gcd(a, b);
return 0;
}
|
C
#include <stdio.h>
int gcd( int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
int main()
{
int a = 98, b = 56;
printf ( "GCD of %d and %d is %d " , a, b, gcd(a, b));
return 0;
}
|
Java
import java.io.*;
class Test
{
static int gcd( int a, int b)
{
if (b == 0 )
return a;
return gcd(b, a % b);
}
public static void main(String[] args)
{
int a = 98 , b = 56 ;
System.out.println( "GCD of " + a + " and " + b + " is " + gcd(a, b));
}
}
|
Python3
def gcd(a,b):
if (b = = 0 ):
return a
return gcd(b, a % b)
a = 98
b = 56
if (gcd(a, b)):
print ( 'GCD of' , a, 'and' , b, 'is' , gcd(a, b))
else :
print ( 'not found' )
|
C#
using System;
class GFG {
static int gcd( int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void Main()
{
int a = 98, b = 56;
Console.WriteLine( "GCD of "
+ a + " and " + b + " is "
+ gcd(a, b));
}
}
|
PHP
<?php
function gcd( $a , $b )
{
if ( $b ==0)
return $a ;
return gcd( $b , $a % $b ) ;
}
$a = 98 ;
$b = 56 ;
echo "GCD of $a and $b is " , gcd( $a , $b ) ;
?>
|
Javascript
<script>
function gcd(a, b){
if (b == 0){
return a;
}
return gcd(b, a % b);
}
let a = 98;
let b = 56;
document.write(`GCD of ${a} and ${b} is ${gcd(a, b)}`);
</script>
|
OutputGCD of 98 and 56 is 14
Time Complexity: O(log(min(a,b))|
Auxiliary Space: O(log(min(a,b))
The time complexity for the above algorithm is O(log(min(a,b))) the derivation for this is obtained from the analysis of the worst-case scenario. What we do is we ask what are the 2 least numbers that take 1 step, those would be (1,1). If we want to increase the number of steps to 2 while keeping the numbers as low as possible as we can take the numbers to be (1,2). Similarly, for 3 steps, the numbers would be (2,3), 4 would be (3,5), 5 would be (5,8). So we can notice a pattern here, for the nth step the numbers would be (fib(n), fib(n+1)). So the worst-case time complexity would be O(n) where a>= fib(n) and b>= fib(n+1).
Now Fibonacci series is an exponentially growing series where the ratio of nth/(n-1)th term approaches (sqrt(5)+1)/2 which is also called the golden ratio. So we can see that the time complexity of the algorithm increases linearly as the terms grow exponentially hence the time complexity would be log(min(a,b)).
Iterative Code for GCD of 2 numbers using Euclidean Algorithm
C++
#include <iostream>
using namespace std;
int gcd( int a, int b)
{
while (a > 0 && b > 0) {
if (a > b) {
a = a % b;
}
else {
b = b % a;
}
}
if (a == 0) {
return b;
}
return a;
}
int main()
{
int a = 98, b = 56;
cout << "GCD of " << a << " and " << b << " is "
<< gcd(a, b);
return 0;
}
|
C
#include <stdio.h>
int gcd( int a, int b)
{
while (a > 0 && b > 0) {
if (a > b) {
a = a % b;
}
else {
b = b % a;
}
}
if (a == 0) {
return b;
}
return a;
}
int main()
{
int a = 98, b = 56;
printf ( "GCD of %d and %d is %d " , a, b, gcd(a, b));
return 0;
}
|
Java
import java.io.*;
class Test {
static int gcd( int a, int b)
{
while (a > 0 && b > 0 ) {
if (a > b) {
a = a % b;
}
else {
b = b % a;
}
}
if (a == 0 ) {
return b;
}
return a;
}
public static void main(String[] args)
{
int a = 98 , b = 56 ;
System.out.println( "GCD of " + a + " and " + b
+ " is " + gcd(a, b));
}
}
|
Python3
def gcd(a, b):
while (a > 0 and b > 0 ):
if (a > b):
a = a % b
else :
b = b % a
if (a = = 0 ):
return b
return a
a = 98
b = 56
if (gcd(a, b)):
print ( 'GCD of' , a, 'and' , b, 'is' , gcd(a, b))
else :
print ( 'not found' )
|
Javascript
<script>
function gcd(a, b){
while (a > 0 && b > 0) {
if (a > b) {
a = a % b;
}
else {
b = b % a;
}
}
if (a == 0) {
return b;
}
return a;
}
let a = 98;
let b = 56;
document.write(`GCD of ${a} and ${b} is ${gcd(a, b)}`);
</script>
|
C#
using System;
class GFG {
static int gcd( int a, int b)
{
while (a > 0 && b > 0) {
if (a > b) {
a = a % b;
}
else {
b = b % a;
}
}
if (a == 0) {
return b;
}
return a;
}
public static void Main()
{
int a = 98, b = 56;
Console.WriteLine( "GCD of " + a + " and " + b
+ " is " + gcd(a, b));
}
}
|
OutputGCD of 98 and 56 is 14
Time Complexity: O(log(min(a,b))|
Auxiliary Space: O(1)
Another Approach: using the inbuilt gcd function (c++14 and above)
syntax:
#include<algorithm>
__gcd(a,b)
a and b are the numbers whose gcd we have to find
C++
#include <algorithm>
#include <iostream>
using namespace std;
int main()
{
int a = 9, b = 27;
cout << "The gcd of a and b is " << __gcd(a, b) << endl;
return 0;
}
|
Output:
The gcd of a and b is 9
Time Complexity: O(logn)
Auxiliary Space: O(1)
Please refer GCD of more than two (or array) numbers to find HCF of more than two numbers.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...