Given two integers A and B. The task is to count how many numbers in the interval [ A, B ] have an odd number of divisors.
Examples:
Input : A = 1, B = 10
Output : 3
Input : A = 5, B = 15
Output : 1
Naive Approach :
The simple approach would be to iterate through all the numbers between range [A, B] and check if their number of divisors is odd.
Below is the implementation of the above idea :
C++
#include <bits/stdc++.h>
using namespace std;
int OddDivCount( int a, int b)
{
int res = 0;
for ( int i = a; i <= b; ++i) {
int divCount = 0;
for ( int j = 1; j <= i; ++j) {
if (i % j == 0) {
++divCount;
}
}
if (divCount % 2) {
++res;
}
}
return res;
}
int main()
{
int a = 1, b = 10;
cout << OddDivCount(a, b) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG {
static int OddDivCount( int a, int b)
{
int res = 0 ;
for ( int i = a; i <= b; ++i) {
int divCount = 0 ;
for ( int j = 1 ; j <= i; ++j) {
if (i % j == 0 ) {
++divCount;
}
}
if ((divCount % 2 ) != 0 ) {
++res;
}
}
return res;
}
public static void main(String[] args)
{
int a = 1 , b = 10 ;
System.out.println(OddDivCount(a, b));
}
}
|
Python3
def OddDivCount(a, b):
res = 0
for i in range (a, b + 1 ) :
divCount = 0
for j in range ( 1 , i + 1 ) :
if (i % j = = 0 ) :
divCount + = 1
if (divCount % 2 ) :
res + = 1
return res
if __name__ = = "__main__" :
a = 1
b = 10
print (OddDivCount(a, b))
|
C#
using System;
class Geeks {
static int OddDivCount( int a, int b)
{
int res = 0;
for ( int i = a; i <= b; ++i) {
int divCount = 0;
for ( int j = 1; j <= i; ++j) {
if (i % j == 0) {
++divCount;
}
}
if ((divCount % 2) != 0) {
++res;
}
}
return res;
}
public static void Main(String[] args)
{
int a = 1, b = 10;
Console.WriteLine(OddDivCount(a, b));
}
}
|
PHP
<?php
function OddDivCount( $a , $b )
{
$res = 0;
for ( $i = $a ; $i <= $b ; ++ $i )
{
$divCount = 0;
for ( $j = 1; $j <= $i ; ++ $j )
{
if ( $i % $j == 0)
{
++ $divCount ;
}
}
if ( $divCount % 2)
{
++ $res ;
}
}
return $res ;
}
$a = 1;
$b = 10;
echo OddDivCount( $a , $b ) ;
?>
|
Javascript
<script>
function OddDivCount(a, b)
{
let res = 0;
for (let i = a; i <= b; ++i)
{
let divCount = 0;
for (let j = 1; j <= i; ++j)
{
if (i % j == 0)
{
++divCount;
}
}
if ((divCount % 2) != 0)
{
++res;
}
}
return res;
}
let a = 1, b = 10;
document.write(OddDivCount(a, b));
</script>
|
Time complexity: O(n2)
Auxiliary Space: O(1)
Better Approach:
A number can be represented by the product of its prime factors with appropriate powers. Those powers can be used to get the number of factors an integer has. If the number is num and it can be represented as (ap1) * (bp2) * (cp3)
Then the count of factors of num are (p1 + 1) * (p2 + 1) * (p3 + 1)
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int divisor( int a)
{
int div = 1, count = 0;
for ( int i = 2; i <= sqrt (a); i++) {
while (a % i == 0) {
count++;
a = a / i;
}
div = div * (count + 1);
count = 0;
}
if (a > 1) {
div = div * (2);
}
return div ;
}
int OddDivCount( int a, int b)
{
int res = 0;
for ( int i = a; i <= b; ++i) {
int divCount = divisor(i);
if (divCount % 2) {
++res;
}
}
return res;
}
int main()
{
int a = 1, b = 10;
cout << OddDivCount(a, b);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int divisor( int a)
{
int div = 1 , count = 0 ;
for ( int i = 2 ; i <= Math.sqrt(a); i++)
{
while (a % i == 0 )
{
count++;
a = a / i;
}
div = div * (count + 1 );
count = 0 ;
}
if (a > 1 )
{
div = div * ( 2 );
}
return div;
}
static int OddDivCount( int a, int b)
{
int res = 0 ;
for ( int i = a; i <= b; ++i)
{
int divCount = divisor(i);
if (divCount % 2 == 1 )
{
++res;
}
}
return res;
}
public static void main(String[] args)
{
int a = 1 , b = 10 ;
System.out.println(OddDivCount(a, b));
}
}
|
Python3
def divisor(a):
div = 1 ;
count = 0 ;
for i in range ( 2 , int ( pow (a, 1 / 2 )) + 1 ):
while (a % i = = 0 ):
count + = 1 ;
a = a / i;
div = div * (count + 1 );
count = 0 ;
if (a > 1 ):
div = div * ( 2 );
return div;
def OddDivCount(a, b):
res = 0 ;
for i in range (a, b + 1 ):
divCount = divisor(i);
if (divCount % 2 ):
res + = 1 ;
return res;
if __name__ = = '__main__' :
a, b = 1 , 10 ;
print (OddDivCount(a, b));
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int divisor( int a)
{
int div = 1, count = 0;
for ( int i = 2;
i <= Math.Sqrt(a); i++)
{
while (a % i == 0)
{
count++;
a = a / i;
}
div = div * (count + 1);
count = 0;
}
if (a > 1)
{
div = div * (2);
}
return div;
}
static int OddDivCount( int a, int b)
{
int res = 0;
for ( int i = a; i <= b; ++i)
{
int divCount = divisor(i);
if (divCount % 2 == 1)
{
++res;
}
}
return res;
}
public static void Main(String[] args)
{
int a = 1, b = 10;
Console.WriteLine(OddDivCount(a, b));
}
}
|
Javascript
<script>
function divisor(a)
{
let div = 1, count = 0;
for (let i = 2; i <= Math.sqrt(a); i++)
{
while (a % i == 0)
{
count++;
a = parseInt(a / i, 10);
}
div = div * (count + 1);
count = 0;
}
if (a > 1)
{
div = div * (2);
}
return div;
}
function OddDivCount(a, b)
{
let res = 0;
for (let i = a; i <= b; ++i)
{
let divCount = divisor(i);
if (divCount % 2 == 1)
{
++res;
}
}
return res;
}
let a = 1, b = 10;
document.write(OddDivCount(a, b));
</script>
|
Time complexity: O(n * logn)
Auxiliary Space: O(1)
Please refer this article for an O(1) approach.