# Program to evaluate the expression (√X+1)^6 + (√X-1)^6

• Last Updated : 19 Jul, 2022

Given a number . The task is to find the value of the below expression for the given value of

Examples:

Input: X = √2
Output: 198
Explanation
= 198
Input: X = 3
Output: 4160

Approach: The idea is to use Binomial expression. We can take these two terms as 2 binomial expressions. By expanding these terms we can find the desired sum. Below is the expansion of the terms.

Now put X= in EQ(1)

Below is the implementation of above approach:

## C++

 // CPP program to evaluate the given expression#include using namespace std; // Function to find the sumfloat calculateSum(float n){    int a = int(n);     return 2 * (pow(n, 6) + 15 * pow(n, 4)            + 15 * pow(n, 2) + 1);} // Driver Codeint main(){    float n = 1.4142;     cout << ceil(calculateSum(n)) << endl;     return 0;}

## Java

 // Java program to evaluate the given expressionimport java.util.*; class gfg{// Function to find the sumpublic static double calculateSum(double n){    return 2 * (Math.pow(n, 6) + 15 * Math.pow(n, 4)            + 15 * Math.pow(n, 2) + 1);} // Driver Codepublic static void main(String[] args){    double n = 1.4142;    System.out.println((int)Math.ceil(calculateSum(n)));}}//This code is contributed by mits

## Python3

 # Python3 program to evaluate# the given expression import math #Function to find the sumdef calculateSum(n):         a = int(n)         return (2 * (pow(n, 6) + 15 * pow(n, 4)            + 15 * pow(n, 2) + 1))     #Driver Codeif __name__=='__main__':    n = 1.4142    print(math.ceil(calculateSum(n))) # this code is contributed by# Shashank_Sharma

## C#

 // C# program to evaluate the given expressionusing System;class gfg{// Function to find the sumpublic static double calculateSum(double n){    return 2 * (Math.Pow(n, 6) + 15 * Math.Pow(n, 4)            + 15 * Math.Pow(n, 2) + 1);} // Driver Codepublic static int Main(){    double n = 1.4142;    Console.WriteLine(Math.Ceiling(calculateSum(n)));    return 0;}}//This code is contributed by Soumik

## PHP

 

## Javascript

 

Output:

198

Time Complexity: O(1)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up