# Program to count number of distinct Squares and Cubes upto N

Given a number N, the task is to find No. of perfect Squares and perfect Cubes from 1 to a given integer, N ( Both Inclusive ).

Note: Numbers which are both perfect Square and perfect Cube should be counted once.

Examples:

Input: N = 70
Output: 10
Numbers that are perfect Square or perfect Cube
1, 4, 8, 9, 16, 25, 27, 36, 49, 64

Input: N = 25
Output: 6
Numbers that are perfect Square or perfect Cube
1, 4, 8, 9, 16, 25

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A Naive approach is to check all numbers from 1 to N, if it is a square or cube.

Below is the implementation of above apporoach:

## C++

 `// C++ implementation of above approach ` `#include ` `#include // For sqrt() and cbrt() ` `using` `namespace` `std; ` ` `  `// Function to check if the ` `// number is a perfect square ` `bool` `isSquare(``int` `num) ` `{ ` `    ``int` `root = ``sqrt``(num); ` `    ``return` `(root * root) == num; ` `} ` ` `  `// Function to check if the ` `// number is a perfect cube ` `bool` `isCube(``int` `num) ` `{ ` `    ``int` `root = cbrt(num); ` `    ``return` `(root * root * root) == num; ` `} ` ` `  `// Function to count the number ` `// of perfect squares and cubes ` `int` `countSC(``int` `N) ` `{ ` `    ``int` `count = 0; ` `    ``for` `(``int` `i = 1; i <= N; i++) { ` ` `  `        ``// If a number is perfect square, ` `        ``if` `(isSquare(i)) ` `            ``count++; ` ` `  `        ``// Else if the number is cube or not ` `        ``else` `if` `(isCube(i)) ` `            ``count++; ` `    ``} ` ` `  `    ``return` `count; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 20; ` ` `  `    ``cout<< ``"Number of squares and cubes is "` `<< countSC(N); ` `    ``return` `0; ` `} `

## Java

 `// Java implementation of ` `// above approach ` `class` `GFG  ` `{ ` ` `  `// Function to check if the ` `// number is a perfect square ` `static` `boolean` `isSquare(``int` `num) ` `{ ` `    ``int` `root = (``int``)Math.sqrt(num); ` `    ``return` `(root * root) == num; ` `} ` ` `  `// Function to check if the ` `// number is a perfect cube ` `static` `boolean` `isCube(``int` `num) ` `{ ` `    ``int` `root = (``int``)Math.cbrt(num); ` `    ``return` `(root * root *  ` `            ``root) == num; ` `} ` ` `  `// Function to count the number ` `// of perfect squares and cubes ` `static` `int` `countSC(``int` `N) ` `{ ` `    ``int` `count = ``0``; ` `    ``for` `(``int` `i = ``1``; i <= N; i++)  ` `    ``{ ` ` `  `        ``// If a number is perfect ` `        ``// square, ` `        ``if` `(isSquare(i)) ` `            ``count++; ` ` `  `        ``// Else if the number is  ` `        ``// cube or not ` `        ``else` `if` `(isCube(i)) ` `            ``count++; ` `    ``} ` ` `  `    ``return` `count; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args)  ` `{ ` `    ``int` `N = ``20``; ` ` `  `    ``System.out.println(``"Number of squares "` `+  ` `                            ``"and cubes is "` `+  ` `                                 ``countSC(N)); ` `} ` `} ` ` `  `// This code is contributed ` `// by ChitraNayal `

## Python3

 `# Python 3 implementation of ` `# above approach  ` ` `  `# Function to check if the  ` `# number is a perfect square ` `def` `isSquare(num) : ` `    ``root ``=` `int``(num ``*``*` `(``1` `/` `2``)) ` ` `  `    ``return` `(root ``*` `root) ``=``=` `num ` ` `  `# Function to check if the  ` `# number is a perfect cube  ` `def` `isCube(num) : ` `    ``root ``=` `int``(num ``*``*` `(``1` `/` `3``)) ` `    ``return` `(root ``*` `root ``*` `root ) ``=``=` `num ` ` `  `# Function to count the number  ` `# of perfect squares and cubes  ` `def` `countSC(N) : ` `    ``count ``=` `0` `    ``for` `i ``in` `range``(``1``, N ``+` `1``) : ` ` `  `        ``# If a number is perfect square,  ` `        ``if` `isSquare(i) : ` `            ``count ``+``=` `1` `             `  `        ``# Else if the number is cube  ` `        ``elif` `isCube(i) : ` `            ``count ``+``=` `1` `             `  `    ``return` `count ` ` `  `# Driver code ` `if` `__name__ ``=``=` `"__main__"` `: ` ` `  `    ``N ``=` `20` ` `  `    ``print``(``"Number of squares and cubes is "``,  ` `                                 ``countSC(N)) ` `             `  `# This code is contributed by ANKITRAI1 `

## C#

 `// C# implementation of ` `// above approach ` `using` `System; ` ` `  `class` `GFG  ` `{ ` ` `  `// Function to check if the ` `// number is a perfect square ` `static` `bool` `isSquare(``int` `num) ` `{ ` `    ``int` `root = (``int``)Math.Sqrt(num); ` `    ``return` `(root * root) == num; ` `} ` ` `  `// Function to check if the ` `// number is a perfect cube ` `static` `bool` `isCube(``int` `num) ` `{ ` `    ``int` `root = (``int``)Math.Pow(num,  ` `                    ``(1.0 / 3.0)); ` `    ``return` `(root * root * root) == num; ` `} ` ` `  `// Function to count the number ` `// of perfect squares and cubes ` `static` `int` `countSC(``int` `N) ` `{ ` `    ``int` `count = 0; ` `    ``for` `(``int` `i = 1; i <= N; i++)  ` `    ``{ ` ` `  `        ``// If a number is perfect  ` `        ``// square, ` `        ``if` `(isSquare(i)) ` `            ``count++; ` ` `  `        ``// Else if the number is ` `        ``// cube or not ` `        ``else` `if` `(isCube(i)) ` `            ``count++; ` `    ``} ` ` `  `    ``return` `count; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main()  ` `{ ` `    ``int` `N = 20; ` ` `  `    ``Console.Write(``"Number of squares and "` `+  ` `                  ``"cubes is "` `+ countSC(N)); ` `} ` `} ` ` `  `// This code is contributed  ` `// by ChitraNayal `

## PHP

 ` `

Output:

```Number of squares and cubes is 5
```

Efficient Approach:

1. Number of squares from 1 to N is floor(sqrt(N)).
2. Number of cubes from 1 to N is floor(cbrt(N)).
3. Eliminate the numbers which are both square and cube ( like 1, 64…. ) by subtracting floor(sqrt(cbrt(N))) from it.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of above approach ` `#include ` `#include // For sqrt() and cbrt() ` `using` `namespace` `std; ` ` `  `// Function to count the number ` `// of perfect squares and cubes ` `int` `countSC(``int` `N) ` `{ ` `    ``int` `res = (``int``)``sqrt``(N) + (``int``)cbrt(N) ` `              ``- (``int``)(``sqrt``(cbrt(N))); ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 20; ` ` `  `    ``cout << ``"Number of squares and cubes is "` `<< countSC(N); ` `    ``return` `0; ` `} `

## Java

 `// Java implementation of ` `// above approach ` `class` `GFG  ` `{ ` ` `  `// Function to count the number ` `// of perfect squares and cubes ` `static` `int` `countSC(``int` `N) ` `{ ` `    ``int` `res = (``int``)Math.sqrt(N) +  ` `              ``(``int``)Math.cbrt(N) -  ` `              ``(``int``)(Math.sqrt(Math.cbrt(N))); ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args)  ` `{ ` `    ``int` `N = ``20``; ` ` `  `    ``System.out.println(``"Number of squares "` `+  ` `                            ``"and cubes is "` `+  ` `                                 ``countSC(N)); ` `} ` `} ` ` `  `// This code is contributed ` `// by ChitraNayal `

## Python3

 `# Python implementation of ` `# above approach ` `import` `math ``# for sqrt() ` ` `  `# Function to count the number ` `# of perfect squares and cubes ` `def` `countSC(N): ` `    ``res ``=` `(``int``(math.sqrt(N)) ``+`  `           ``int``(N ``*``*` `(``1` `/` `3``)) ``-`  `           ``int``(math.sqrt(N ``*``*` `(``1` `/` `3``)))) ` ` `  `    ``return` `res ` ` `  `# Driver code ` `N ``=` `20` `print``(``"Number of squares and cubes is"``,  ` `                            ``countSC(N)) ` ` `  `# This code is contributed  ` `# by vaibhav29498 `

## C#

 `//C# implementation of  ` `// above approach  ` `using` `System;  ` `public` `class` `GFG { ` ` `  `    ``// Function to count the number  ` `    ``// of perfect squares and cubes  ` `    ``static` `int` `countSC(``int` `N)  ` `    ``{  ` `        ``int` `res = (``int``)(Math.Sqrt(N) +  ` `            ``Math.Ceiling(Math.Pow(N, (``double``)1 / 3)) -  ` `            ``(Math.Sqrt(Math.Ceiling(Math.Pow(N, (``double``)1 / 3)))));  ` ` `  `        ``return` `res;  ` `    ``}  ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main()  ` `    ``{  ` `        ``int` `N = 20;  ` ` `  `        ``Console.Write(``"Number of squares "` `+ ``"and cubes is "` `+  ` `                ``countSC(N));  ` `    ``}  ` `}  ` ` `  ` `  `/*This code is contributed by 29AjayKumar*/`

## PHP

 ` `

Output:

```Number of squares and cubes is 5
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.