Program to convert Infix notation to Expression Tree

Given a string representing infix notation. The task is to convert it to an expression tree.

Expression Tree is a binary tree where the operands are represented by leaf nodes and operators are represented by intermediate nodes. No node can have a single child.

Construction of Expression tree

The algorithm follows a combination of shunting yard along with postfix-to-expression tree conversion.

Consider the below line:



((s[i]!=’^’ && p[stC.top()]>=p[s[i]]) || (s[i]==’^’ && p[stC.top()]>p[s[i]])))

You might remember that unlike ‘+’, ‘-‘, ‘*’ and ‘/’; ‘^’ is right associative.
In simpler terms, a^b^c is a^(b^c) not (a^b)^c. So it must be evaluated from the right.

Now lets take a look at how does the algorithm work,

Let us have an expression s = ((a+b)*c-e*f)
currently both the stacks are empty- 
(we'll use C to denote the char stack and N for node stack)
    s[0] = '('            ((a+b)*c-e*f)
                          ^
        C|(|, N| |
    
    s[1] = '('           ((a+b)*c-e*f)
                          ^
         |(|  
        C|(|, N| |
                         
    s[2] = 'a'            ((a+b)*c-e*f)
                            ^
         |(|  
        C|(|, N|a|
                         
    s[3] = '+'            ((a+b)*c-e*f)
                             ^
         |+|
         |(|  
        C|(|, N|a|
        
    s[4] = 'b'             ((a+b)*c-e*f)
                               ^
         |+|
         |(|   |b|
        C|(|, N|a|
         
    s[5] = ')'             ((a+b)*c-e*f)
                                ^
         |+|            t = '+'         +
         |(|   |b|  ->  t1= 'b'        / \    ->  
        C|(|, N|a|      t2= 'a'       a   b      C|(|, N|+|
        
    s[6] = '*'              ((a+b)*c-e*f)
                                  ^
         |*|  
        C|(|, N|+|
    
    s[7] = 'c'              ((a+b)*c-e*f)
                                   ^
         |*|   |c|
        C|(|, N|+|
        
    s[8] = '-'   ((a+b)*c-e*f)              now (C.top(*)>[8](-))
                         ^    t = '*'        *
         |*|   |c|            t1 = c        / \  ->    |-|
        C|(|, N|+|            t2 = +       +   c      C|(|, N|*|
                                          / \
                                         a   b
    s[9] = 'e'            ((a+b)*c-e*f)
                                   ^
         |-|   |e|
        C|(|, N|*|
        
    s[10] = '*'            ((a+b)*c-e*f)      now (C.top(-)>[8](*))
                                     ^
         |*|                          
         |-|   |e| 
        C|(|, N|*|
    
    s[11] = 'f'             ((a+b)*c-e*f)
                                       ^
         |*|   |f|
         |-|   |e|
        C|(|, N|*|
    
    s[12] = ')'             ((a+b)*c-e*f)
       1>                               ^
         |*|   |f|         t = '*'          *        
         |-|   |e|  ->     t1= 'f'  ->     / \  ->   |-|   |*|
        C|(|, N|*|         t2= 'e'        e   f     C|(|, N|*|
        
       2>                               
                           t = '-'           -        
         |-|   |*|  ->     t1= 'f'  ->     /   \  ->   
        C|(|, N|*|         t2= 'e'        *     *     C| |, N|-|
                                         / \   / \
                                        +   c  e  f
                                       / \
                                      a   b 
      now make (-) the root of the tree

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Tree Structure
typedef struct node {
    char data;
    struct node *left, *right;
} * nptr;
  
// Function to create new node
nptr newNode(char c)
{
    nptr n = new node;
    n->data = c;
    n->left = n->right = nullptr;
    return n;
}
  
// Function to build Expression Tree
nptr build(string& s)
{
  
    // Stack to hold nodes
    stack<nptr> stN;
  
    // Stack to hold chars
    stack<char> stC;
    nptr t, t1, t2;
  
    // Prioritising the operators
    int p[123] = { 0 };
    p['+'] = p['-'] = 1, p['/'] = p['*'] = 2, p['^'] = 3, p[')'] = 0;
  
    for (int i = 0; i < s.length(); i++) {
        if (s[i] == '(') {
  
            // Push '(' in char stack
            stC.push(s[i]);
        }
  
        // Push the operands in node stack
        else if (isalpha(s[i])) {
            t = newNode(s[i]);
            stN.push(t);
        }
        else if (p[s[i]] > 0) {
  
            // If an operator with lower or
            // same associativity appears
            while (!stC.empty() && stC.top() != '('
                   && ((s[i] != '^' && p[stC.top()] >= p[s[i]])
                       || (s[i] == '^' && p[stC.top()] > p[s[i]]))) {
  
                // Get and remove the top element
                // from the character stack
                t = newNode(stC.top());
                stC.pop();
  
                // Get and remove the top element
                // from the node stack
                t1 = stN.top();
                stN.pop();
  
                // Get and remove the currently top
                // element from the node stack
                t2 = stN.top();
                stN.pop();
  
                // Update the tree
                t->left = t2;
                t->right = t1;
  
                // Push the node to the node stack
                stN.push(t);
            }
  
            // Push s[i] to char stack
            stC.push(s[i]);
        }
        else if (s[i] == ')') {
            while (!stC.empty() && stC.top() != '(') {
                t = newNode(stC.top());
                stC.pop();
                t1 = stN.top();
                stN.pop();
                t2 = stN.top();
                stN.pop();
                t->left = t2;
                t->right = t1;
                stN.push(t);
            }
            stC.pop();
        }
    }
    t = stN.top();
    return t;
}
  
// Function to print the post order
// traversal of the tree
void postorder(nptr root)
{
    if (root) {
        postorder(root->left);
        postorder(root->right);
        cout << root->data;
    }
}
  
// Driver code
int main()
{
    string s = "(a^b^(c/d/e-f)^(x*y-m*n))";
    s = "(" + s;
    s += ")";
    nptr root = build(s);
    postorder(root);
  
    return 0;
}

chevron_right


Output:

abcd/e/f-xy*mn*-^^^

The time Complexity is O(n) as each character is accessed only once.
The space Complexity is O(n) as (char_stack + node_stack) <= n

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.