# Program to check if two given matrices are identical

The below program checks if two square matrices of size 4*4 are identical or not.For any two matrix to be equal, number of rows and columns in both the matrix should be equal and the corresponding elements should also be equal.

## C++

 `// C++ Program to check if two ` `// given matrices are identical ` `#include ` `#define N 4 ` `using` `namespace` `std; ` ` `  `// This function returns 1 if A[][] and B[][] are identical ` `// otherwise returns 0 ` `int` `areSame(``int` `A[][N], ``int` `B[][N]) ` `{ ` `    ``int` `i, j; ` `    ``for` `(i = 0; i < N; i++) ` `        ``for` `(j = 0; j < N; j++) ` `            ``if` `(A[i][j] != B[i][j]) ` `                ``return` `0; ` `    ``return` `1; ` `} ` ` `  `int` `main() ` `{ ` `    ``int` `A[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``int` `B[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``if` `(areSame(A, B)) ` `        ``cout << ``"Matrices are identical"``; ` `    ``else` `        ``cout << ``"Matrices are not identical"``; ` `    ``return` `0; ` `} ` `//This code is contributed by Shivi_Aggarwal `

## C

 `// C Program to check if two  ` `// given matrices are identical ` `#include ` `#define N 4 ` ` `  `// This function returns 1 if A[][] and B[][] are identical ` `// otherwise returns 0 ` `int` `areSame(``int` `A[][N], ``int` `B[][N]) ` `{ ` `    ``int` `i, j; ` `    ``for` `(i = 0; i < N; i++) ` `        ``for` `(j = 0; j < N; j++) ` `            ``if` `(A[i][j] != B[i][j]) ` `                ``return` `0; ` `    ``return` `1; ` `} ` ` `  `int` `main() ` `{ ` `    ``int` `A[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``int` `B[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``if` `(areSame(A, B)) ` `        ``printf``(``"Matrices are identical"``); ` `    ``else` `        ``printf``(``"Matrices are not identical"``); ` `    ``return` `0; ` `} `

## Java

 `// Java Program to check if two  ` `// given matrices are identical ` ` `  `class` `GFG ` `{ ` `    ``static` `final` `int` `N = ``4``; ` `     `  `    ``// This function returns 1 if A[][]  ` `    ``// and B[][] are identical ` `    ``// otherwise returns 0 ` `    ``static` `int` `areSame(``int` `A[][], ``int` `B[][]) ` `    ``{ ` `        ``int` `i, j; ` `        ``for` `(i = ``0``; i < N; i++) ` `            ``for` `(j = ``0``; j < N; j++) ` `                ``if` `(A[i][j] != B[i][j]) ` `                    ``return` `0``; ` `            ``return` `1``; ` `    ``} ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `        ``int` `A[][] = { {``1``, ``1``, ``1``, ``1``}, ` `                      ``{``2``, ``2``, ``2``, ``2``}, ` `                      ``{``3``, ``3``, ``3``, ``3``}, ` `                      ``{``4``, ``4``, ``4``, ``4``}}; ` `     `  `        ``int` `B[][] = { {``1``, ``1``, ``1``, ``1``}, ` `                      ``{``2``, ``2``, ``2``, ``2``}, ` `                      ``{``3``, ``3``, ``3``, ``3``}, ` `                      ``{``4``, ``4``, ``4``, ``4``}}; ` `     `  `        ``if` `(areSame(A, B) == ``1``) ` `            ``System.out.print(``"Matrices are identical"``); ` `        ``else` `            ``System.out.print(``"Matrices are not identical"``); ` `    ``} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python3

 `# Python3 Program to check if two ` `# given matrices are identical ` ` `  `N ``=` `4` `  `  `# This function returns 1 ` `# if A[][] and B[][] are identical ` `# otherwise returns 0 ` `def` `areSame(A,B): ` `     `  `    ``for` `i ``in` `range``(N): ` `        ``for` `j ``in` `range``(N): ` `            ``if` `(A[i][j] !``=` `B[i][j]): ` `                ``return` `0` `    ``return` `1` ` `  `# driver code ` `A``=` `[ [``1``, ``1``, ``1``, ``1``], ` `    ``[``2``, ``2``, ``2``, ``2``], ` `    ``[``3``, ``3``, ``3``, ``3``], ` `    ``[``4``, ``4``, ``4``, ``4``]] ` `  `  `B``=` `[ [``1``, ``1``, ``1``, ``1``], ` `    ``[``2``, ``2``, ``2``, ``2``], ` `    ``[``3``, ``3``, ``3``, ``3``], ` `    ``[``4``, ``4``, ``4``, ``4``]] ` `                     `  `if` `(areSame(A, B)``=``=``1``): ` `    ``print``(``"Matrices are identical"``) ` `else``: ` `    ``print``(``"Matrices are not identical"``) ` ` `  `# This code is contributed ` `# by Anant Agarwal. `

## C#

 `// C# Program to check if two  ` `// given matrices are identical ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``static` `int` `N = 4; ` `     `  `    ``// This function returns 1 if A[][]  ` `    ``// and B[][] are identical ` `    ``// otherwise returns 0 ` `    ``static` `int` `areSame(``int` `[,]A, ``int` `[,]B) ` `    ``{ ` `        ``int` `i, j; ` `        ``for` `(i = 0; i < N; i++) ` `            ``for` `(j = 0; j < N; j++) ` `                ``if` `(A[i,j] != B[i,j]) ` `                    ``return` `0; ` `            ``return` `1; ` `    ``} ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main () ` `    ``{ ` `        ``int` `[,]A = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` `     `  `        ``int` `[,]B = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` `     `  `        ``if` `(areSame(A, B) == 1) ` `            ``Console.WriteLine(``"Matrices "` `                      ``+ ``"are identical"``);   ` `        ``else` `            ``Console.WriteLine(``"Matrices "` `                  ``+ ``"are not identical"``); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## PHP

 ` `

Output:

`Matrices are identical`

The program can be extended for rectangular matrices. The following post can be useful for extending this program.

How to pass a 2D array as a parameter in C?

The time complexity of the above program is O(n2).

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : vt_m, Shivi_Aggarwal

Article Tags :
Practice Tags :

3

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.