# Program to check if two given matrices are identical

The below program checks if two square matrices of size 4*4 are identical or not.For any two matrix to be equal, number of rows and columns in both the matrix should be equal and the corresponding elements should also be equal.

## C++

 `// C++ Program to check if two ` `// given matrices are identical ` `#include ` `#define N 4 ` `using` `namespace` `std; ` ` `  `// This function returns 1 if A[][] and B[][] are identical ` `// otherwise returns 0 ` `int` `areSame(``int` `A[][N], ``int` `B[][N]) ` `{ ` `    ``int` `i, j; ` `    ``for` `(i = 0; i < N; i++) ` `        ``for` `(j = 0; j < N; j++) ` `            ``if` `(A[i][j] != B[i][j]) ` `                ``return` `0; ` `    ``return` `1; ` `} ` ` `  `int` `main() ` `{ ` `    ``int` `A[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``int` `B[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``if` `(areSame(A, B)) ` `        ``cout << ``"Matrices are identical"``; ` `    ``else` `        ``cout << ``"Matrices are not identical"``; ` `    ``return` `0; ` `} ` `//This code is contributed by Shivi_Aggarwal `

## C

 `// C Program to check if two  ` `// given matrices are identical ` `#include ` `#define N 4 ` ` `  `// This function returns 1 if A[][] and B[][] are identical ` `// otherwise returns 0 ` `int` `areSame(``int` `A[][N], ``int` `B[][N]) ` `{ ` `    ``int` `i, j; ` `    ``for` `(i = 0; i < N; i++) ` `        ``for` `(j = 0; j < N; j++) ` `            ``if` `(A[i][j] != B[i][j]) ` `                ``return` `0; ` `    ``return` `1; ` `} ` ` `  `int` `main() ` `{ ` `    ``int` `A[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``int` `B[N][N] = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` ` `  `    ``if` `(areSame(A, B)) ` `        ``printf``(``"Matrices are identical"``); ` `    ``else` `        ``printf``(``"Matrices are not identical"``); ` `    ``return` `0; ` `} `

## Java

 `// Java Program to check if two  ` `// given matrices are identical ` ` `  `class` `GFG ` `{ ` `    ``static` `final` `int` `N = ``4``; ` `     `  `    ``// This function returns 1 if A[][]  ` `    ``// and B[][] are identical ` `    ``// otherwise returns 0 ` `    ``static` `int` `areSame(``int` `A[][], ``int` `B[][]) ` `    ``{ ` `        ``int` `i, j; ` `        ``for` `(i = ``0``; i < N; i++) ` `            ``for` `(j = ``0``; j < N; j++) ` `                ``if` `(A[i][j] != B[i][j]) ` `                    ``return` `0``; ` `            ``return` `1``; ` `    ``} ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `        ``int` `A[][] = { {``1``, ``1``, ``1``, ``1``}, ` `                      ``{``2``, ``2``, ``2``, ``2``}, ` `                      ``{``3``, ``3``, ``3``, ``3``}, ` `                      ``{``4``, ``4``, ``4``, ``4``}}; ` `     `  `        ``int` `B[][] = { {``1``, ``1``, ``1``, ``1``}, ` `                      ``{``2``, ``2``, ``2``, ``2``}, ` `                      ``{``3``, ``3``, ``3``, ``3``}, ` `                      ``{``4``, ``4``, ``4``, ``4``}}; ` `     `  `        ``if` `(areSame(A, B) == ``1``) ` `            ``System.out.print(``"Matrices are identical"``); ` `        ``else` `            ``System.out.print(``"Matrices are not identical"``); ` `    ``} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python3

 `# Python3 Program to check if two ` `# given matrices are identical ` ` `  `N ``=` `4` `  `  `# This function returns 1 ` `# if A[][] and B[][] are identical ` `# otherwise returns 0 ` `def` `areSame(A,B): ` `     `  `    ``for` `i ``in` `range``(N): ` `        ``for` `j ``in` `range``(N): ` `            ``if` `(A[i][j] !``=` `B[i][j]): ` `                ``return` `0` `    ``return` `1` ` `  `# driver code ` `A``=` `[ [``1``, ``1``, ``1``, ``1``], ` `    ``[``2``, ``2``, ``2``, ``2``], ` `    ``[``3``, ``3``, ``3``, ``3``], ` `    ``[``4``, ``4``, ``4``, ``4``]] ` `  `  `B``=` `[ [``1``, ``1``, ``1``, ``1``], ` `    ``[``2``, ``2``, ``2``, ``2``], ` `    ``[``3``, ``3``, ``3``, ``3``], ` `    ``[``4``, ``4``, ``4``, ``4``]] ` `                     `  `if` `(areSame(A, B)``=``=``1``): ` `    ``print``(``"Matrices are identical"``) ` `else``: ` `    ``print``(``"Matrices are not identical"``) ` ` `  `# This code is contributed ` `# by Anant Agarwal. `

## C#

 `// C# Program to check if two  ` `// given matrices are identical ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``static` `int` `N = 4; ` `     `  `    ``// This function returns 1 if A[][]  ` `    ``// and B[][] are identical ` `    ``// otherwise returns 0 ` `    ``static` `int` `areSame(``int` `[,]A, ``int` `[,]B) ` `    ``{ ` `        ``int` `i, j; ` `        ``for` `(i = 0; i < N; i++) ` `            ``for` `(j = 0; j < N; j++) ` `                ``if` `(A[i,j] != B[i,j]) ` `                    ``return` `0; ` `            ``return` `1; ` `    ``} ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main () ` `    ``{ ` `        ``int` `[,]A = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` `     `  `        ``int` `[,]B = { {1, 1, 1, 1}, ` `                    ``{2, 2, 2, 2}, ` `                    ``{3, 3, 3, 3}, ` `                    ``{4, 4, 4, 4}}; ` `     `  `        ``if` `(areSame(A, B) == 1) ` `            ``Console.WriteLine(``"Matrices "` `                      ``+ ``"are identical"``);   ` `        ``else` `            ``Console.WriteLine(``"Matrices "` `                  ``+ ``"are not identical"``); ` `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

## PHP

 ` `

Output:

`Matrices are identical`

The program can be extended for rectangular matrices. The following post can be useful for extending this program.

How to pass a 2D array as a parameter in C?

The time complexity of the above program is O(n2).

My Personal Notes arrow_drop_up

Improved By : vt_m, Shivi_Aggarwal

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.