Program to check if N is a triacontagonal number
Given a number N, the task is to check if the number is a Triacontagonal number or not.
A Triacontagonal number is a class of figurate number. It has 30 – sided polygon called triacontagon. The N-th triacontagonal number count’s the 30 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few triacontagonol numbers are 1, 30, 87, 172 …
Examples:
Input: N = 30
Output: Yes
Explanation:
Second triacontagonal number is 30.Input: 32
Output: No
Approach:
1. The Kth term of the triacontagonal number is given as:
2. As we have to check whether the given number can be expressed as a triacontagonal number or not. This can be checked as follows:
=>
=> K = \frac{26 + \sqrt{224*N + 676}}{56}
3. Finally, check the value computed using this formula is an integer, which means that N is a triacontagonal number.
Below is the implementation of the above approach:
C++
// C++ program to check whether a // number is an triacontagonal // number or not #include <bits/stdc++.h> using namespace std; // Function to check whether a // number is an triacontagonal // number or not bool istriacontagonal( int N) { float n = (26 + sqrt (224 * N + 676)) / 56; // Condition to check whether a // number is an triacontagonal // number or not return (n - ( int )n) == 0; } // Driver Code int main() { // Given number int i = 30; // Function call if (istriacontagonal(i)) { cout << "Yes" ; } else { cout << "No" ; } return 0; } |
Java
// Java program to check whether a // number is an triacontagonal // number or not class GFG{ // Function to check whether a // number is an triacontagonal // number or not static boolean istriacontagonal( int N) { float n = ( float ) (( 26 + Math.sqrt( 224 * N + 676 )) / 56 ); // Condition to check whether a // number is an triacontagonal // number or not return (n - ( int )n) == 0 ; } // Driver code public static void main(String[] args) { // Given number int N = 30 ; // Function call if (istriacontagonal(N)) { System.out.print( "Yes" ); } else { System.out.print( "No" ); } } } // This code is contributed by shubham |
Python3
# Python3 program to check whether a # number is an triacontagonal # number or not import math; # Function to check whether a # number is an triacontagonal # number or not def istriacontagonal(N): n = ( 26 + math.sqrt( 224 * N + 676 )) / / 56 ; # Condition to check whether a # number is an triacontagonal # number or not return (n - int (n)) = = 0 ; # Driver Code # Given number i = 30 ; # Function call if (istriacontagonal(i)): print ( "Yes" ); else : print ( "No" ); # This code is contributed by Code_Mech |
C#
// C# program to check whether a // number is an triacontagonal // number or not using System; class GFG{ // Function to check whether a // number is an triacontagonal // number or not static bool istriacontagonal( int N) { float n = ( float )((26 + Math.Sqrt(224 * N + 676)) / 56); // Condition to check whether a // number is an triacontagonal // number or not return (n - ( int )n) == 0; } // Driver code public static void Main(String[] args) { // Given number int N = 30; // Function call if (istriacontagonal(N)) { Console.Write( "Yes" ); } else { Console.Write( "No" ); } } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // javascript program to check whether a // number is an triacontagonal // number or not // Function to check whether a // number is an triacontagonal // number or not function istriacontagonal( N) { let n = ((26 + Math.sqrt(224 * N + 676)) / 56); // Condition to check whether a // number is an triacontagonal // number or not return (n - parseInt(n)) == 0; } // Driver code // Given number let N = 30; // Function call if (istriacontagonal(N)) { document.write( "Yes" ); } else { document.write( "No" ); } // This code is contributed by aashish1995 </script> |
Yes
Time Complexity: O(log(n)), since sqrt() function has been used
Auxiliary Space: O(1)
Please Login to comment...