Program to check if N is a Octagonal Number

Given a number N, the task is to check if N is a Octagonal Number or not. If the number N is an Octagonal Number then print “Yes” else print “No”.

Octagonal Number is the figure number that represent octagonal. Octagonal Numbers can be formed by placing triangular numbers on the four sides of a square. The first few Octagonal Numbers are 1, 8, 21, 40, 65, 96 …

Examples:

Input: N = 8
Output: Yes
Explanation:
Second octagonal number is 8.

Input: N = 30
Output: No



Approach:

  1. The Kth term of the octagonal number is given as

    K^{th} Term = 3*K^{2} - 2*K

  2. As we have to check that the given number can be expressed as a Octagonal Number or not. This can be checked as:

    => N =  3*K^{2} - 2*K
    => K = \frac{2 + \sqrt{12*N + 4}}{6}

  3. If the value of K calculated using the above formula is an integer, then N is a Octagonal Number.
  4. Else N is not a Octagonal Number.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if N is a
// Octagonal Number
bool isoctagonal(int N)
{
    float n
        = (2 + sqrt(12 * N + 4))
          / 6;
  
    // Condition to check if the
    // number is a octagonal number
    return (n - (int)n) == 0;
}
  
// Driver Code
int main()
{
    // Given Number
    int N = 8;
  
    // Function call
    if (isoctagonal(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.io.*; 
import java.util.*; 
  
class GFG { 
      
// Function to check if N is a
// octagonal number
public static boolean isoctagonal(int N)
{
    double n = (2 + Math.sqrt(12 * N + 4)) / 6;
      
    // Condition to check if the
    // number is a octagonal number
    return (n - (int)n) == 0;
}
      
// Driver code 
public static void main(String[] args) 
      
    // Given Number
    int N = 8;
      
    // Function call
    if (isoctagonal(N))
    {
        System.out.println("Yes");
    }
    else
    {
        System.out.println("No");
    }
  
// This code is contributed by coder001

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach 
from math import sqrt
  
# Function to check if N is a 
# octagonal number 
def isoctagonal(N):
  
    n = (2 + sqrt(12 * N + 4)) / 6
  
    # Condition to check if the 
    # number is a octagonal number 
    return (n - int(n)) == 0
      
# Driver Code 
if __name__ == "__main__"
  
    # Given number 
    N = 8
  
    # Function call 
    if (isoctagonal(N)):
        print("Yes"); 
      
    else:
        print("No"); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
  
class GFG { 
      
// Function to check if N is a
// octagonal number
public static bool isoctagonal(int N)
{
    double n = (2 + Math.Sqrt(12 * N +
                              4)) / 6;
      
    // Condition to check if the
    // number is a octagonal number
    return (n - (int)n) == 0;
}
      
// Driver code 
public static void Main(String[] args) 
      
    // Given number
    int N = 8;
      
    // Function call
    if (isoctagonal(N))
    {
        Console.WriteLine("Yes");
    }
    else
    {
        Console.WriteLine("No");
    }
  
// This code is contributed by Rohit_ranjan

chevron_right


Output:

Yes

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


    Check out this Author's contributed articles.

    If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

    Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



    Article Tags :
    Practice Tags :


    Be the First to upvote.


    Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.