Open In App
Related Articles

Program to check if N is a Centered heptagonal number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer N, the task is to check if it is a Centered heptagonal number or not.
 

Centered heptagonal number is centered figure number that represents a heptagon with dot in center and all other dot surrounding in heptagonal form..The first few Centered heptagonal number are 1, 8, 22, 43, 71, 106, 148, …

Examples: 
 

Input: N = 8 
Output: Yes 
Explanation: 
8 is the Second Centered heptagonal number.
Input: 20 
Output: No 
Explanation: 
20 is not a Centered heptagonal number. 
 

 

Approach: 
To solve the problem mentioned above we have to know that the Kth term of the Centered heptagonal number is given as: K^{th} Term = \frac {7*N^{2} - 7*N + 2}{2}
As we have to check that the given number can be expressed as a Centered heptagonal number or not. This can be checked by generalizing the equation as: 
 

=> N = \frac {7*k^{2} - 7*k + 2}{2}
=> K = \frac{7 + \sqrt{56*N + 7}}{14}
 

Finally, check the value of computation using this formula if it is an integer, if yes then it means that N is a Centered heptagonal number.
Below is the implementation of the above approach:
 

C++




// C++ implementation to check that
// a number is a Centered
// heptagonal number or not
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check that the
// number is a Centered
// heptagonal number
bool isCenteredheptagonal(int N)
{
    float n = (7 + sqrt(56 * N - 7)) / 14;
 
    // Condition to check if the
    // number is a Centered heptagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
int main()
{
    int n = 8;
 
    // Function call
    if (isCenteredheptagonal(n)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java implementation to check that
// a number is a Centered
// heptagonal number or not
import java.lang.Math;
 
class GFG
{
     
// Function to check that the
// number is a Centered
// heptagonal number
public static boolean isCenteredheptagonal(int N)
{
    double n = (7 + Math.sqrt(56 * N - 7)) / 14;
 
    // Condition to check if the
    // number is a Centered heptagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 8;
 
    // Function call
    if (isCenteredheptagonal(n))
    {
        System.out.println("Yes");
    }
    else
    {
        System.out.println("No");
    }
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 implementation to check
# that a number is a centered
# heptagonal number or not
import math
 
# Function to check that the
# number is a centered
# heptagonal number
def isCenteredheptagonal(N):
     
    n = (7 + math.sqrt(56 * N - 7)) / 14
     
    # Condition to check if the number
    # is a centered heptagonal number
    return (n - int(n)) == 0
     
# Driver Code
n = 8
 
# Function call
if (isCenteredheptagonal(n)):
    print("Yes")
else:
    print("No")
     
# This code is contributed by ShubhamCoder


C#




// C# implementation to check that
// a number is a centered
// heptagonal number or not
using System;
 
class GFG{
 
// Function to check that the
// number is a centered
// heptagonal number
static bool isCenteredheptagonal(int N)
{
    double n = (7 + Math.Sqrt(56 * N - 7)) / 14;
     
    // Condition to check if the number
    // is a centered heptagonal number
    return (n - (int)n) == 0;
}
     
// Driver Code
static public void Main ()
{
    int n = 8;
     
    // Function call
    if (isCenteredheptagonal(n))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by ShubhamCoder


Javascript




<script>
// Javascript implementation to check that
// a number is a Centered
// heptagonal number or not
 
// Function to check that the
// number is a Centered
// heptagonal number
function isCenteredheptagonal(N)
{
    let n = (7 + Math.sqrt(56 * N - 7)) / 14;
 
    // Condition to check if the
    // number is a Centered heptagonal number
    return (n - parseInt(n)) == 0;
}
 
// Driver Code
let n = 8;
 
// Function call
if (isCenteredheptagonal(n)) {
    document.write("Yes");
}
else {
    document.write("No");
}
 
// This code is contributed by rishavmahato348.
</script>


Output: 

Yes

 

Time Complexity: O(logN)

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 19 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials