Program to check if N is a Centered Decagonal Number
Given an integer N, the task is to check if N is a Centered Decagonal Number or not. If the number N is a Centered Decagonal Number then print “Yes” else print “No”.
Centered Decagonal Number is centered figurative number that represents a decagon with dot in center and all other dot surrounding it in successive Decagonal Number form. The first few Centered decagonal numbers are 1, 11, 31, 61, 101, 151 …
Examples:
Input: N = 11
Output: Yes
Explanation:
Second Centered decagonal number is 11.Input: N = 30
Output: No
Approach:
1. The Kth term of the Centered Decagonal Number is given as
2. As we have to check that the given number can be expressed as a Centered Decagonal Number or not. This can be checked as follows:
=>
=>
3. If the value of K calculated using the above formula is an integer, then N is a Centered Decagonal Number.
4. Else the number N is not a Centered Decagonal Number.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if number N // is a Centered decagonal number bool isCentereddecagonal( int N) { float n = (5 + sqrt (20 * N + 5)) / 10; // Condition to check if N // is Centered Decagonal Number return (n - ( int )n) == 0; } // Driver Code int main() { int N = 11; // Function call if (isCentereddecagonal(N)) { cout << "Yes" ; } else { cout << "No" ; } return 0; } |
Java
// Java implementation to check that a number // is a centered decagonal number or not import java.lang.Math; class GFG{ // Function to check that the number // is a centered decagonal number public static boolean isCentereddecagonal( int N) { double n = ( 5 + Math.sqrt( 20 * N + 5 )) / 10 ; // Condition to check if the number // is a centered decagonal number return (n - ( int )n) == 0 ; } // Driver Code public static void main(String[] args) { int n = 11 ; // Function call if (isCentereddecagonal(n)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } } } // This code is contributed by ShubhamCoder |
Python3
# Python3 program for the above approach import numpy as np # Function to check if the number N # is a centered decagonal number def isCentereddecagonal(N): n = ( 5 + np.sqrt( 20 * N + 5 )) / 10 # Condition to check if N # is centered decagonal number return (n - int (n)) = = 0 # Driver Code N = 11 # Function call if (isCentereddecagonal(N)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by PratikBasu |
C#
// C# implementation to check that a number // is a centered decagonal number or not using System; class GFG{ // Function to check that the number // is a centered decagonal number static bool isCentereddecagonal( int N) { double n = (5 + Math.Sqrt(20 * N + 5)) / 10; // Condition to check if the number // is a centered decagonal number return (n - ( int )n) == 0; } // Driver Code static public void Main () { int n = 11; // Function call if (isCentereddecagonal(n)) { Console.Write( "Yes" ); } else { Console.Write( "No" ); } } } // This code is contributed by ShubhamCoder |
Javascript
<script> // Javascript program for the above approach // Function to check if number N // is a Centered decagonal number function isCentereddecagonal(N) { let n = (5 + Math.sqrt(20 * N + 5)) / 10; // Condition to check if N // is Centered Decagonal Number return (n - parseInt(n)) == 0; } // Driver Code let N = 11; // Function call if (isCentereddecagonal(N)) { document.write( "Yes" ); } else { document.write( "No" ); } </script> |
Yes
Time Complexity: O(logn)
Auxiliary Space: O(1)
Please Login to comment...