Skip to content
Related Articles
Program to check if N is a Centered Decagonal Number
• Last Updated : 31 Mar, 2021

Given an integer N, the task is to check if N is a Centered Decagonal Number or not. If the number N is a Centered Decagonal Number then print “Yes” else print “No”.

Centered Decagonal Number is centered figurative number that represents a decagon with dot in center and all other dot surrounding it in successive Decagonal Number form. The first few Centered decagonal numbers are 1, 11, 31, 61, 101, 151 …

Examples:

Input: N = 11
Output: Yes
Explanation:
Second Centered decagonal number is 11.

Input: N = 30
Output: No

Approach:

1. The Kth term of the Centered Decagonal Number is given as 2. As we have to check that the given number can be expressed as a Centered Decagonal Number or not. This can be checked as follows:

=> => 3. If the value of K calculated using the above formula is an integer, then N is a Centered Decagonal Number.

4. Else the number N is not a Centered Decagonal Number.

Below is the implementation of the above approach:

## C++

 // C++ program for the above approach#include using namespace std; // Function to check if number N// is a Centered decagonal numberbool isCentereddecagonal(int N){    float n        = (5 + sqrt(20 * N + 5))          / 10;     // Condition to check if N    // is Centered Decagonal Number    return (n - (int)n) == 0;} // Driver Codeint main(){    int N = 11;     // Function call    if (isCentereddecagonal(N)) {        cout << "Yes";    }    else {        cout << "No";    }    return 0;}

## Java

 // Java implementation to check that a number// is a centered decagonal number or notimport java.lang.Math; class GFG{     // Function to check that the number// is a centered decagonal numberpublic static boolean isCentereddecagonal(int N){    double n = (5 + Math.sqrt(20 * N + 5)) / 10;     // Condition to check if the number    // is a centered decagonal number    return (n - (int)n) == 0;} // Driver Codepublic static void main(String[] args){    int n = 11;     // Function call    if (isCentereddecagonal(n))    {        System.out.println("Yes");    }    else    {        System.out.println("No");    }}} // This code is contributed by ShubhamCoder

## Python3

 # Python3 program for the above approachimport numpy as np # Function to check if the number N# is a centered decagonal numberdef isCentereddecagonal(N):     n = (5 + np.sqrt(20 * N + 5)) / 10     # Condition to check if N    # is centered decagonal number    return (n - int(n)) == 0 # Driver CodeN = 11 # Function callif (isCentereddecagonal(N)):    print ("Yes")else:    print ("No") # This code is contributed by PratikBasu

## C#

 // C# implementation to check that a number// is a centered decagonal number or notusing System; class GFG{     // Function to check that the number// is a centered decagonal numberstatic bool isCentereddecagonal(int N){    double n = (5 + Math.Sqrt(20 * N + 5)) / 10;         // Condition to check if the number    // is a centered decagonal number    return (n - (int)n) == 0;}     // Driver Codestatic public void Main (){    int n = 11;         // Function call    if (isCentereddecagonal(n))    {        Console.Write("Yes");    }    else    {        Console.Write("No");    }}} // This code is contributed by ShubhamCoder

## Javascript

 
Output:
Yes

Time Complexity: O(1)

Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up