Open In App
Related Articles

Program to check if N is a Centered Decagonal Number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer N, the task is to check if N is a Centered Decagonal Number or not. If the number N is a Centered Decagonal Number then print “Yes” else print “No”.

Centered Decagonal Number is centered figurative number that represents a decagon with dot in center and all other dot surrounding it in successive Decagonal Number form. The first few Centered decagonal numbers are 1, 11, 31, 61, 101, 151 … 

Examples:  

Input: N = 11 
Output: Yes 
Explanation: 
Second Centered decagonal number is 11.

Input: N = 30 
Output: No 

Approach:  

1. The Kth term of the Centered Decagonal Number is given as
K^{th} Term = 4*K^{2} - 4*K + 1
 

2. As we have to check that the given number can be expressed as a Centered Decagonal Number or not. This can be checked as follows: 

=> N = {4*K^{2} - 4*K + 1}
=> K = \frac{5 + \sqrt{20*N + 5}}{10}

3. If the value of K calculated using the above formula is an integer, then N is a Centered Decagonal Number.

4. Else the number N is not a Centered Decagonal Number.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if number N
// is a Centered decagonal number
bool isCentereddecagonal(int N)
{
    float n
        = (5 + sqrt(20 * N + 5))
          / 10;
 
    // Condition to check if N
    // is Centered Decagonal Number
    return (n - (int)n) == 0;
}
 
// Driver Code
int main()
{
    int N = 11;
 
    // Function call
    if (isCentereddecagonal(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java implementation to check that a number
// is a centered decagonal number or not
import java.lang.Math;
 
class GFG{
     
// Function to check that the number
// is a centered decagonal number
public static boolean isCentereddecagonal(int N)
{
    double n = (5 + Math.sqrt(20 * N + 5)) / 10;
 
    // Condition to check if the number
    // is a centered decagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 11;
 
    // Function call
    if (isCentereddecagonal(n))
    {
        System.out.println("Yes");
    }
    else
    {
        System.out.println("No");
    }
}
}
 
// This code is contributed by ShubhamCoder


Python3




# Python3 program for the above approach
import numpy as np
 
# Function to check if the number N
# is a centered decagonal number
def isCentereddecagonal(N):
 
    n = (5 + np.sqrt(20 * N + 5)) / 10
 
    # Condition to check if N
    # is centered decagonal number
    return (n - int(n)) == 0
 
# Driver Code
N = 11
 
# Function call
if (isCentereddecagonal(N)):
    print ("Yes")
else:
    print ("No")
 
# This code is contributed by PratikBasu


C#




// C# implementation to check that a number
// is a centered decagonal number or not
using System;
 
class GFG{
     
// Function to check that the number
// is a centered decagonal number
static bool isCentereddecagonal(int N)
{
    double n = (5 + Math.Sqrt(20 * N + 5)) / 10;
     
    // Condition to check if the number
    // is a centered decagonal number
    return (n - (int)n) == 0;
}
     
// Driver Code
static public void Main ()
{
    int n = 11;
     
    // Function call
    if (isCentereddecagonal(n))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by ShubhamCoder


Javascript




<script>
// Javascript program for the above approach
 
// Function to check if number N
// is a Centered decagonal number
function isCentereddecagonal(N)
{
    let n
        = (5 + Math.sqrt(20 * N + 5))
          / 10;
 
    // Condition to check if N
    // is Centered Decagonal Number
    return (n - parseInt(n)) == 0;
}
 
// Driver Code
let N = 11;
 
// Function call
if (isCentereddecagonal(N)) {
document.write("Yes");
}
else {
document.write("No");
}
 
</script>


Output: 

Yes

 

Time Complexity: O(logn)

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 19 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials