Given an integer **N** where . The task is to check whether the number is not divisible by any of its digit. If the given number N is divisible by any of its digits then print “YES” else print “NO”.

**Examples:**

Input :N = 5115Output :YESExplanation: 5115 is divisible by both 1 and 5. So print YES.Input :27Output :NOExplanation: 27 is not divisible by 2 or 7

**Approach :** The idea to solve the problem is to extract the digits of the number one by one and check if the number is divisible by any of its digit. If it is divisible by any of it’s digit then print YES otherwise print NO.

Below is the implementation of above approach:

## C++

`// CPP implementation of above approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to check if given number is divisible ` `// by any of its digits ` `string isDivisible(` `long` `long` `int` `n) ` `{ ` ` ` `long` `long` `int` `temp = n; ` ` ` ` ` `// check if any of digit divides n ` ` ` `while` `(n) { ` ` ` `int` `k = n % 10; ` ` ` ` ` `// check if K divides N ` ` ` `if` `(temp % k == 0) ` ` ` `return` `"YES"` `; ` ` ` ` ` `n /= 10; ` ` ` `} ` ` ` ` ` `return` `"NO"` `; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` `long` `long` `int` `n = 9876543; ` ` ` ` ` `cout << isDivisible(n); ` ` ` ` ` `return` `0; ` `} ` |

## Java

`// Java implementation of above approach ` ` ` `class` `GFG ` `{ ` ` ` ` ` `// Function to check if given number is divisible ` ` ` `// by any of its digits ` ` ` `static` `String isDivisible(` `int` `n) ` ` ` `{ ` ` ` `int` `temp = n; ` ` ` ` ` `// check if any of digit divides n ` ` ` `while` `(n > ` `0` `) ` ` ` `{ ` ` ` `int` `k = n % ` `10` `; ` ` ` ` ` `// check if K divides N ` ` ` `if` `(temp % k == ` `0` `) ` ` ` `{ ` ` ` `return` `"YES"` `; ` ` ` `} ` ` ` `n /= ` `10` `; ` ` ` `} ` ` ` ` ` `return` `"NO"` `; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `int` `n = ` `9876543` `; ` ` ` `System.out.println(isDivisible(n)); ` ` ` `} ` `} ` ` ` `// This code is contributed by 29AjayKumar ` |

## Python3

`# Python program implementation of above approach ` ` ` `# Function to check if given number is ` `# divisible by any of its digits ` `def` `isDivisible(n): ` ` ` `temp ` `=` `n ` ` ` ` ` `# check if any of digit divides n ` ` ` `while` `(n): ` ` ` `k ` `=` `n ` `%` `10` ` ` ` ` `# check if K divides N ` ` ` `if` `(temp ` `%` `k ` `=` `=` `0` `): ` ` ` `return` `"YES"` ` ` ` ` `n ` `/` `=` `10` `; ` ` ` ` ` `# Number is not divisible by ` ` ` `# any of digits ` ` ` `return` `"NO"` ` ` `# Driver Code ` `n ` `=` `9876543` `print` `(isDivisible(n)) ` ` ` `# This code is contributed by ` `# Sanjit_Prasad ` |

## C#

`// C# implementation of above approach ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` ` ` `// Function to check if given number is divisible ` ` ` `// by any of its digits ` ` ` `static` `String isDivisible(` `int` `n) ` ` ` `{ ` ` ` `int` `temp = n; ` ` ` ` ` `// check if any of digit divides n ` ` ` `while` `(n > 0) ` ` ` `{ ` ` ` `int` `k = n % 10; ` ` ` ` ` `// check if K divides N ` ` ` `if` `(temp % k == 0) ` ` ` `{ ` ` ` `return` `"YES"` `; ` ` ` `} ` ` ` `n /= 10; ` ` ` `} ` ` ` ` ` `return` `"NO"` `; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `Main(String[] args) ` ` ` `{ ` ` ` `int` `n = 9876543; ` ` ` `Console.WriteLine(isDivisible(n)); ` ` ` `} ` `} ` ` ` `// This code is contributed by PrinciRaj1992 ` |

## PHP

`<?php ` `// PHP implementation of above approach ` ` ` `// Function to check if given number ` `// is divisible by any of its digits ` `function` `isDivisible(` `$n` `) ` `{ ` ` ` `$temp` `= ` `$n` `; ` ` ` ` ` `// check if any of digit divides n ` ` ` `while` `(` `$n` `) ` ` ` `{ ` ` ` `$k` `= ` `$n` `% 10; ` ` ` ` ` `// check if K divides N ` ` ` `if` `(` `$temp` `% ` `$k` `== 0) ` ` ` `return` `"YES"` `; ` ` ` ` ` `$n` `= ` `floor` `(` `$n` `/ 10); ` ` ` `} ` ` ` ` ` `return` `"NO"` `; ` `} ` ` ` `// Driver Code ` `$n` `= 9876543; ` ` ` `echo` `isDivisible(` `$n` `); ` ` ` `// This code is contributed by Ryuga ` `?> ` |

**Output:**

YES

**Time Complexity**: O(log(N))

**Auxiliary Space**: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.