Given a value of angle, you need to calculate Sin and Cos values corresponding to it.
For sin function
Examples:
Input : 90
Output : 1

C++
#include <iostream>
#include <math.h>
using namespace std;
void cal_sin( float n)
{
float accuracy = 0.0001, denominator, sinx, sinval;
n = n * (3.142 / 180.0);
float x1 = n;
sinx = n;
sinval = sin (n);
int i = 1;
do
{
denominator = 2 * i * (2 * i + 1);
x1 = -x1 * n * n / denominator;
sinx = sinx + x1;
i = i + 1;
} while (accuracy <= fabs (sinval - sinx));
cout << sinx;
}
int main()
{
float n = 90;
cal_sin(n);
return 0;
}
|
Java
import static java.lang.Math.sin;
class GFG {
static void cal_sin( float n)
{
float accuracy = ( float ) 0.0001 , denominator, sinx, sinval;
n = n * ( float )( 3.142 / 180.0 );
float x1 = n;
sinx = n;
sinval = ( float )sin(n);
int i = 1 ;
do
{
denominator = 2 * i * ( 2 * i + 1 );
x1 = -x1 * n * n / denominator;
sinx = sinx + x1;
i = i + 1 ;
} while (accuracy <= sinval - sinx);
System.out.println(sinx);
}
public static void main(String[] args) {
float n = 90 ;
cal_sin(n);
}
}
|
Python3
import math;
def cal_sin(n):
accuracy = 0.0001 ;
n = n * ( 3.142 / 180.0 );
x1 = n;
sinx = n;
sinval = math.sin(n);
i = 1 ;
while ( True ):
denominator = 2 * i * ( 2 * i + 1 );
x1 = - x1 * n * n / denominator;
sinx = sinx + x1;
i = i + 1 ;
if (accuracy < = abs (sinval - sinx)):
break ;
print ( round (sinx));
n = 90 ;
cal_sin(n);
|
C#
using System;
class GFG
{
static void cal_sin( float n)
{
float accuracy = ( float ) 0.0001,
denominator, sinx, sinval;
n = n * ( float )(3.142 / 180.0);
float x1 = n;
sinx = n;
sinval = ( float )Math.Sin(n);
int i = 1;
do
{
denominator = 2 * i * (2 * i + 1);
x1 = -x1 * n * n / denominator;
sinx = sinx + x1;
i = i + 1;
} while (accuracy <= sinval - sinx);
Console.WriteLine(sinx);
}
static public void Main ()
{
float n = 90;
cal_sin(n);
}
}
|
PHP
<?php
function cal_sin( $n )
{
$accuracy = 0.0001;
$n = $n * (3.142 / 180.0);
$x1 = $n ;
$sinx = $n ;
$sinval = sin( $n );
$i = 1;
do
{
$denominator = 2 * $i * (2 * $i + 1);
$x1 = - $x1 * $n * $n / $denominator ;
$sinx = $sinx + $x1 ;
$i = $i + 1;
} while ( $accuracy <= abs ( $sinval - $sinx ));
echo round ( $sinx );
}
$n = 90;
cal_sin( $n );
?>
|
Javascript
<script>
function cal_sin(n) {
var accuracy = 0.0001, denominator, sinx, sinval;
n = n * (3.142 / 180.0);
var x1 = n;
sinx = n;
sinval = Math.sin(n);
var i = 1;
do {
denominator = 2 * i * (2 * i + 1);
x1 = -x1 * n * n / denominator;
sinx = (sinx + x1);
i = i + 1;
} while (accuracy <= sinval - sinx);
document.write(sinx.toFixed(0));
}
var n = 90;
cal_sin(n);
</script>
|
Output:
1
For cos function
Examples:
Input : 30
Output : 0.86602

C++
#include <iostream>
#include <math.h>
using namespace std;
void cal_cos( float n)
{
float accuracy = 0.0001, x1, denominator, cosx, cosval;
n = n * (3.142 / 180.0);
x1 = 1;
cosx = x1;
cosval = cos (n);
int i = 1;
do
{
denominator = 2 * i * (2 * i - 1);
x1 = -x1 * n * n / denominator;
cosx = cosx + x1;
i = i + 1;
} while (accuracy <= fabs (cosval - cosx));
cout << cosx;
}
int main()
{
float n = 30;
cal_cos(n);
}
|
Java
import static java.lang.Math.cos;
class GFG {
static void cal_cos( float n) {
float accuracy = ( float ) 0.0001 , x1, denominator, cosx, cosval;
n = n * ( float ) ( 3.142 / 180.0 );
x1 = 1 ;
cosx = x1;
cosval = ( float ) cos(n);
int i = 1 ;
do {
denominator = 2 * i * ( 2 * i - 1 );
x1 = -x1 * n * n / denominator;
cosx = cosx + x1;
i = i + 1 ;
}
while (accuracy <= cosval - cosx);
System.out.println(cosx);
}
public static void main(String[] args) {
float n = 30 ;
cal_cos(n);
}
}
|
Python3
from math import fabs, cos
def cal_cos(n):
accuracy = 0.0001
n = n * ( 3.142 / 180.0 )
x1 = 1
cosx = x1
cosval = cos(n)
i = 1
denominator = 2 * i * ( 2 * i - 1 )
x1 = - x1 * n * n / denominator
cosx = cosx + x1
i = i + 1
while (accuracy < = fabs(cosval - cosx)):
denominator = 2 * i * ( 2 * i - 1 )
x1 = - x1 * n * n / denominator
cosx = cosx + x1
i = i + 1
print ( '{0:.6}' . format (cosx))
if __name__ = = '__main__' :
n = 30
cal_cos(n)
|
C#
using System;
class GFG {
static void cal_cos( float n) {
float accuracy = ( float ) 0.0001, x1, denominator, cosx, cosval;
n = n * ( float ) (3.142 / 180.0);
x1 = 1;
cosx = x1;
cosval = ( float ) Math.Cos(n);
int i = 1;
do {
denominator = 2 * i * (2 * i - 1);
x1 = -x1 * n * n / denominator;
cosx = cosx + x1;
i = i + 1;
}
while (accuracy <= cosval - cosx);
Console.WriteLine(cosx);
}
static void Main() {
float n = 30;
cal_cos(n);
}
}
|
PHP
<?php
function cal_cos( $n )
{
$accuracy = 0.0001;
$n = $n * (3.142 / 180.0);
$x1 = 1;
$cosx = $x1 ;
$cosval = cos ( $n );
$i = 1;
do
{
$denominator = 2 * $i * (2 * $i - 1);
$x1 = - $x1 * $n * $n / $denominator ;
$cosx = $cosx + $x1 ;
$i = $i + 1;
} while ( $accuracy <= abs ( $cosval - $cosx ));
echo round ( $cosx , 6);
}
$n = 30;
cal_cos( $n );
?>
|
Javascript
<script>
function cal_cos(n)
{
let accuracy = 0.0001, x1, denominator, cosx, cosval;
n = n * (3.142 / 180.0);
x1 = 1;
cosx = x1;
cosval = Math.cos(n);
let i = 1;
do
{
denominator = 2 * i * (2 * i - 1);
x1 = -x1 * n * n / denominator;
cosx = cosx + x1;
i = i + 1;
} while (accuracy <= Math.abs(cosval - cosx));
document.write(cosx.toFixed(5));
}
let n = 30;
cal_cos(n);
</script>
|
Output:
0.86602
This article is contributed by Sakshi Tiwari. If you like GeeksforGeeks(We know you do!) and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.