# Program to Calculate the Edge Cover of a Graph

• Last Updated : 01 Apr, 2021

Given the number of vertices N of a graph. The task is to determine the Edge cover.
Edge Cover: Minimum number of edge required to cover all vertex is known as Edge Cover.
Examples:

Input : N = 5
Output : 3

Input : N = 4
Output : 2

Example 1: For N = 5 vertices,

Edge Cover is: 3 (Choosing the edges marked in Red, all of the vertices will get covered)

Example 2: For N = 8 vertices,

Edge Cover is: 4 (Choosing the edges marked in Red, all of the vertices will get covered)

Formula:

Edge Cover = ceil (no. of vertices / 2)

Below is the implementation of the above approach:

## C++

 // C++ program to find Edge Cover#include using namespace std; // Function that calculates Edge Coverint edgeCover(int n){    float result = 0;     result = ceil(n / 2.0);     return result;} // Driver Codeint main(){    int n = 5;     cout << edgeCover(n);     return 0;}

## Java

 // Java program to find Edge Coverimport java.util.*;import java.lang.*;import java.io.*; class GFG{// Function that calculates Edge Coverstatic int edgeCover(int n){    int result = 0;      result = (int)Math.ceil((double)n / 2.0);      return result;}  // Driver Codepublic static void main(String args[]){    int n = 5;      System.out.print(edgeCover(n));} }

## Python3

 # Python 3 implementation of the above approach. import math # Function that calculates Edge Coverdef edgeCover(n):         result = 0         result = math.ceil(n / 2.0)         return result          # Driver code     if __name__ == "__main__" :       n =  5       print(int(edgeCover(n))) # this code is contributed by Naman_Garg

## C#

 // C# program to find Edge Coverusing System; class GFG{// Function that calculates Edge Coverstatic int edgeCover(int n){    int result = 0;     result = (int)Math.Ceiling((double)n / 2.0);     return result;} // Driver Codestatic public void Main (){    int n = 5;         Console.Write(edgeCover(n));}} // This code is contributed by Raj



## Javascript



Output:

3

My Personal Notes arrow_drop_up