Program to calculate the area of Kite
Kite is something like rhombus but in Kite, the adjacent sides are equal and diagonals are generally not equal.
Method 1: When both the diagonals are given
If diagonals d1 and d2 are given of the kite, then the area of a kite is half of product of both the diagonals i.e.

Example:
Input: d1 = 4, d2 = 6 Output: Area of Kite = 12 Input: d1 = 5, d2 = 7 Output: Area of Kite = 17.5
Approach: In this method we simply use above formula.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the area of kite float areaOfKite( int d1, int d2) { // use above formula float area = (d1 * d2) / 2; return area; } // Driver code int main() { int d1 = 4, d2 = 6; cout << "Area of Kite = " << areaOfKite(d1, d2); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the area of kite static float areaOfKite( int d1, int d2) { // Use above formula float area = (d1 * d2) / 2 ; return area; } // Driver code public static void main(String[] args) { int d1 = 4 , d2 = 6 ; System.out.println( "Area of Kite = " + areaOfKite(d1, d2)); } } // This code is contributed by Rajput-Ji |
Python3
# Python implementation of the approach # Function to return the area of kite def areaOfKite(d1, d2): # use above formula area = (d1 * d2) / 2 ; return area; # Driver code d1 = 4 ; d2 = 6 ; print ( "Area of Kite = " , areaOfKite(d1, d2)); # This code is contributed by Rajput-Ji |
C#
// C# implementation of the approach using System; class GFG { // Function to return the area of kite static float areaOfKite( int d1, int d2) { // Use above formula float area = (d1 * d2) / 2; return area; } // Driver code public static void Main() { int d1 = 4, d2 = 6; Console.WriteLine( "Area of Kite = " + areaOfKite(d1, d2)); } } // This code is contributed by anuj_67.. |
Javascript
<script> // Javascript implementation of the approach // Function to return the area of kite function areaOfKite(d1, d2) { // use above formula var area = (d1 * d2) / 2; return area; } // Driver code var d1 = 4, d2 = 6; document.write( "Area of Kite = " + areaOfKite(d1, d2)); </script> |
Output:
Area of Kite = 12
Time Complexity: O(1)
Auxiliary Space: O(1)
Method 2: When side a, b and angle are given:
When the unequal sides of kite a and b and the included angle Θ between them are given, then

Example:
Input: a = 4, b = 7, θ = 78 Output: Area of Kite = 27.3881 Input: a = 6, b = 9, θ = 83 Output: Area of Kite = 53.5975
Approach: In this method we simply use above formula.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define PI 3.14159 / 180 using namespace std; // Function to return the area of the kite float areaOfKite( int a, int b, double angle) { // convert angle degree to radians angle = angle * PI; // use above formula double area = a * b * sin (angle); return area; } // Driver code int main() { int a = 4, b = 7, angle = 78; cout << "Area of Kite = " << areaOfKite(a, b, angle); return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { static double PI = ( 3.14159 / 180 ); // Function to return the area of the kite static float areaOfKite( int a, int b, double angle) { // convert angle degree to radians angle = angle * PI; // use above formula double area = a * b * Math.sin(angle); return ( float )area; } // Driver code public static void main (String[] args) { int a = 4 , b = 7 , angle = 78 ; System.out.println ( "Area of Kite = " + areaOfKite(a, b, angle)); } } // This code is contributed by jit_t. |
Python3
# Python implementation of the approach import math PI = 3.14159 / 180 ; # Function to return the area of the kite def areaOfKite(a, b, angle): # convert angle degree to radians angle = angle * PI; # use above formula area = a * b * math.sin(angle); return area; # Driver code a = 4 ; b = 7 ; angle = 78 ; print ( "Area of Kite = " , areaOfKite(a, b, angle)); # This code contributed by PrinciRaj1992 |
C#
// C# implementation of the approach using System; class GFG { static double PI = (3.14159 / 180); // Function to return the area of the kite static float areaOfKite( int a, int b, double angle) { // convert angle degree to radians angle = angle * PI; // use above formula double area = a * b * Math.Sin(angle); return ( float )area; } // Driver code static public void Main () { int a = 4, b = 7, angle = 78; Console.WriteLine( "Area of Kite = " + areaOfKite(a, b, angle)); } } // This code is contributed by ajit |
Javascript
<script> // Javascript implementation of the approach var PI = 3.14159 / 180 // Function to return the area of the kite function areaOfKite(a, b, angle) { // convert angle degree to radians angle = angle * PI; // use above formula var area = a * b * Math.sin(angle); return area.toFixed(4); } // Driver code var a = 4, b = 7, angle = 78; document.write( "Area of Kite = " + areaOfKite(a, b, angle)); // This code is contributed by rutvik_56. </script> |
Output:
Area of Kite = 27.3881
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...