Program to calculate the area of Kite

Kite is something like rhombus but in Kite, the adjacent sides are equal and diagonals are generally not equal.

**Method 1: When bboth the diagonals are given**

- If diagonals
**d1**and**d2**are given of the kite, then the area of a kite is half of product of both the diagonals i.e.

**Example:**

Input:d1 = 4, d2 = 6Output:Area of Kite = 12Input:d1 = 5, d2 = 7Output:Area of Kite = 17.5

**Approach:**In this method we simply use above formula.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the area of kite` `float` `areaOfKite(` `int` `d1, ` `int` `d2)` `{` ` ` `// use above formula` ` ` `float` `area = (d1 * d2) / 2;` ` ` `return` `area;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `d1 = 4, d2 = 6;` ` ` `cout << ` `"Area of Kite = "` ` ` `<< areaOfKite(d1, d2);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` ` ` `// Function to return the area of kite` ` ` `static` `float` `areaOfKite(` `int` `d1, ` `int` `d2)` ` ` `{` ` ` `// Use above formula` ` ` `float` `area = (d1 * d2) / ` `2` `;` ` ` `return` `area;` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `d1 = ` `4` `, d2 = ` `6` `;` ` ` `System.out.println(` `"Area of Kite = "` ` ` `+ areaOfKite(d1, d2));` ` ` `}` `}` `// This code is contributed by Rajput-Ji` |

## Python3

` ` `# Python implementation of the approach` `# Function to return the area of kite` `def` `areaOfKite(d1, d2):` ` ` `# use above formula` ` ` `area ` `=` `(d1 ` `*` `d2) ` `/` `2` `;` ` ` `return` `area;` `# Driver code` `d1 ` `=` `4` `;` `d2 ` `=` `6` `;` `print` `(` `"Area of Kite = "` `,` ` ` `areaOfKite(d1, d2));` `# This code is contributed by Rajput-Ji` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` `// Function to return the area of kite` `static` `float` `areaOfKite(` `int` `d1, ` `int` `d2)` `{` ` ` `// Use above formula` ` ` `float` `area = (d1 * d2) / 2;` ` ` `return` `area;` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `int` `d1 = 4, d2 = 6;` ` ` `Console.WriteLine(` `"Area of Kite = "` ` ` `+ areaOfKite(d1, d2));` `}` `}` `// This code is contributed by anuj_67..` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to return the area of kite` `function` `areaOfKite(d1, d2)` `{` ` ` `// use above formula` ` ` `var` `area = (d1 * d2) / 2;` ` ` `return` `area;` `}` `// Driver code` `var` `d1 = 4, d2 = 6;` `document.write(` `"Area of Kite = "` ` ` `+ areaOfKite(d1, d2));` `</script>` |

**Output:**

Area of Kite = 12

**Method 2: When side a, b and angle are given:**

- When the unequal sides of kite
**a**and**b**and the included angle**Θ**between them are given, then

**Example:**

Input:a = 4, b = 7, θ = 78Output:Area of Kite = 27.3881Input:a = 6, b = 9, θ = 83Output:Area of Kite = 53.5975

**Approach:**In this method we simply use above formula.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `#define PI 3.14159 / 180` `using` `namespace` `std;` `// Function to return the area of the kite` `float` `areaOfKite(` `int` `a, ` `int` `b, ` `double` `angle)` `{` ` ` `// convet angle degree to radians` ` ` `angle = angle * PI;` ` ` `// use above formula` ` ` `double` `area = a * b * ` `sin` `(angle);` ` ` `return` `area;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `a = 4, b = 7, angle = 78;` ` ` `cout << ` `"Area of Kite = "` ` ` `<< areaOfKite(a, b, angle);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `import` `java.io.*;` `class` `GFG` `{` ` ` `static` `double` `PI = (` `3.14159` `/ ` `180` `);` `// Function to return the area of the kite` `static` `float` `areaOfKite(` `int` `a, ` `int` `b, ` `double` `angle)` `{` ` ` `// convet angle degree to radians` ` ` `angle = angle * PI;` ` ` ` ` `// use above formula` ` ` `double` `area = a * b * Math.sin(angle);` ` ` `return` `(` `float` `)area;` `}` `// Driver code` `public` `static` `void` `main (String[] args)` `{` ` ` `int` `a = ` `4` `, b = ` `7` `, angle = ` `78` `;` ` ` `System.out.println (` `"Area of Kite = "` `+ areaOfKite(a, b, angle));` `}` `}` `// This code is contributed by jit_t.` |

## Python3

`# Python implementation of the approach` `import` `math` `PI ` `=` `3.14159` `/` `180` `;` `# Function to return the area of the kite` `def` `areaOfKite(a, b, angle):` ` ` ` ` `# convet angle degree to radians` ` ` `angle ` `=` `angle ` `*` `PI;` ` ` ` ` `# use above formula` ` ` `area ` `=` `a ` `*` `b ` `*` `math.sin(angle);` ` ` `return` `area;` `# Driver code` `a ` `=` `4` `; b ` `=` `7` `; angle ` `=` `78` `;` `print` `(` `"Area of Kite = "` `,` ` ` `areaOfKite(a, b, angle));` `# This code contributed by PrinciRaj1992` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` ` ` `static` `double` `PI = (3.14159 / 180);` `// Function to return the area of the kite` `static` `float` `areaOfKite(` `int` `a, ` `int` `b, ` `double` `angle)` `{` ` ` `// convet angle degree to radians` ` ` `angle = angle * PI;` ` ` ` ` `// use above formula` ` ` `double` `area = a * b * Math.Sin(angle);` ` ` `return` `(` `float` `)area;` `}` `// Driver code` `static` `public` `void` `Main ()` `{` ` ` `int` `a = 4, b = 7, angle = 78;` ` ` `Console.WriteLine(` `"Area of Kite = "` `+ areaOfKite(a, b, angle));` `}` `}` `// This code is contributed by ajit` |

**Output:**

Area of Kite = 27.3881

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.