# Program to calculate the area of Kite

Kite is something like rhombus but in Kite, the adjacent sides are equal and diagonals are generally not equal.

1. Method 1: When bboth the diagonals are given If diagonals d1 and d2 are given of the kite, then the area of a kite is half of product of both the diagonals i.e. Example:

Input: d1 = 4, d2 = 6
Output: Area of Kite  = 12

Input: d1 = 5, d2 = 7
Output: Area of Kite  = 17.5


Approach: In this method we simply use above formula.

Below is the implementation of the above approach:

## C++

 // C++ implementation of the approach     #include  using namespace std;     // Function to return the area of kite  float areaOfKite(int d1, int d2)  {      // use above formula      float area = (d1 * d2) / 2;      return area;  }     // Driver code  int main()  {      int d1 = 4, d2 = 6;      cout << "Area of Kite = "          << areaOfKite(d1, d2);         return 0;  }

## Java

 // Java implementation of the approach  class GFG   {         // Function to return the area of kite      static float areaOfKite(int d1, int d2)      {          // Use above formula          float area = (d1 * d2) / 2;          return area;      }         // Driver code      public static void main(String[] args)      {          int d1 = 4, d2 = 6;          System.out.println("Area of Kite = "                 + areaOfKite(d1, d2));      }  }     // This code is contributed by Rajput-Ji

## Python3

     # Python implementation of the approach     # Function to return the area of kite  def areaOfKite(d1, d2):         # use above formula      area = (d1 * d2) / 2;      return area;     # Driver code  d1 = 4;  d2 = 6;  print("Area of Kite = ",      areaOfKite(d1, d2));     # This code is contributed by Rajput-Ji

## C#

 // C# implementation of the approach  using System;     class GFG   {     // Function to return the area of kite  static float areaOfKite(int d1, int d2)  {      // Use above formula      float area = (d1 * d2) / 2;      return area;  }     // Driver code  public static void Main()  {      int d1 = 4, d2 = 6;      Console.WriteLine("Area of Kite = "             + areaOfKite(d1, d2));  }  }     // This code is contributed by anuj_67..

Output:

Area of Kite = 12

2. Method 2: When side a, b and angle are given: When the unequal sides of kite a and b and the included angle Θ between them are given, then Example:

Input: a = 4, b = 7, θ = 78
Output: Area of Kite  = 27.3881

Input: a = 6, b = 9, θ = 83
Output: Area of Kite  = 53.5975



Approach: In this method we simply use above formula.

Below is the implementation of the above approach:

## C++

 // C++ implementation of the approach     #include  #define PI 3.14159 / 180  using namespace std;     // Function to return the area of the kite  float areaOfKite(int a, int b, double angle)  {      // convet angle degree to radians      angle = angle * PI;      // use above formula         double area = a * b * sin(angle);      return area;  }     // Driver code  int main()  {      int a = 4, b = 7, angle = 78;      cout << "Area of Kite = "          << areaOfKite(a, b, angle);         return 0;  }

## Java

 // Java implementation of the approach  import java.io.*;     class GFG  {         static double PI = (3.14159 / 180);     // Function to return the area of the kite  static float areaOfKite(int a, int b, double angle)  {      // convet angle degree to radians      angle = angle * PI;             // use above formula      double area = a * b * Math.sin(angle);      return (float)area;  }     // Driver code  public static void main (String[] args)  {         int a = 4, b = 7, angle = 78;      System.out.println ("Area of Kite = " + areaOfKite(a, b, angle));  }  }     // This code is contributed by jit_t.

## Python3

 # Python implementation of the approach  import math  PI = 3.14159 / 180;     # Function to return the area of the kite  def areaOfKite(a, b, angle):             # convet angle degree to radians      angle = angle * PI;             # use above formula         area = a * b * math.sin(angle);      return area;     # Driver code  a = 4; b = 7; angle = 78;  print("Area of Kite = ",          areaOfKite(a, b, angle));     # This code contributed by PrinciRaj1992

## C#

 // C# implementation of the approach  using System;     class GFG  {      static double PI = (3.14159 / 180);     // Function to return the area of the kite  static float areaOfKite(int a, int b, double angle)  {      // convet angle degree to radians      angle = angle * PI;             // use above formula      double area = a * b * Math.Sin(angle);      return (float)area;  }     // Driver code  static public void Main ()  {      int a = 4, b = 7, angle = 78;      Console.WriteLine("Area of Kite = " + areaOfKite(a, b, angle));  }  }     // This code is contributed by ajit

Output:

Area of Kite = 27.3881


My Personal Notes arrow_drop_up Strategy Path planning and Destination matters in success No need to worry about in between temporary failures

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.