Program to calculate the area of Kite

Kite is something like rhombus but in Kite, the adjacent sides are equal and diagonals are generally not equal.

  1. Method 1: When bboth the diagonals are given

    If diagonals d1 and d2 are given of the kite, then the area of a kite is half of product of both the diagonals i.e.



     \ Area = \frac{ d1 * d2 } {2} \

    Example:

    Input: d1 = 4, d2 = 6
    Output: Area of Kite  = 12
    
    Input: d1 = 5, d2 = 7
    Output: Area of Kite  = 17.5
    

    Approach: In this method we simply use above formula.

    Below is the implementation of the above approach:

    C++

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C++ implementation of the approach
      
    #include <bits/stdc++.h>
    using namespace std;
      
    // Function to return the area of kite
    float areaOfKite(int d1, int d2)
    {
        // use above formula
        float area = (d1 * d2) / 2;
        return area;
    }
      
    // Driver code
    int main()
    {
        int d1 = 4, d2 = 6;
        cout << "Area of Kite = "
             << areaOfKite(d1, d2);
      
        return 0;
    }

    chevron_right

    
    

    Java

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // Java implementation of the approach
    class GFG 
    {
      
        // Function to return the area of kite
        static float areaOfKite(int d1, int d2)
        {
            // Use above formula
            float area = (d1 * d2) / 2;
            return area;
        }
      
        // Driver code
        public static void main(String[] args)
        {
            int d1 = 4, d2 = 6;
            System.out.println("Area of Kite = "
                    + areaOfKite(d1, d2));
        }
    }
      
    // This code is contributed by Rajput-Ji

    chevron_right

    
    

    Python3

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

        # Python implementation of the approach
      
    # Function to return the area of kite
    def areaOfKite(d1, d2):
      
        # use above formula
        area = (d1 * d2) / 2;
        return area;
      
    # Driver code
    d1 = 4;
    d2 = 6;
    print("Area of Kite = ",
        areaOfKite(d1, d2));
      
    # This code is contributed by Rajput-Ji

    chevron_right

    
    

    C#

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C# implementation of the approach
    using System;
      
    class GFG 
    {
      
    // Function to return the area of kite
    static float areaOfKite(int d1, int d2)
    {
        // Use above formula
        float area = (d1 * d2) / 2;
        return area;
    }
      
    // Driver code
    public static void Main()
    {
        int d1 = 4, d2 = 6;
        Console.WriteLine("Area of Kite = "
                + areaOfKite(d1, d2));
    }
    }
      
    // This code is contributed by anuj_67..

    chevron_right

    
    

    Output:

    Area of Kite = 12
    
  2. Method 2: When side a, b and angle are given:

    When the unequal sides of kite a and b and the included angle Θ between them are given, then

     \ Area = a*b*sin\theta \

    Example:

    Input: a = 4, b = 7, θ = 78
    Output: Area of Kite  = 27.3881
    
    Input: a = 6, b = 9, θ = 83
    Output: Area of Kite  = 53.5975
    
    

    Approach: In this method we simply use above formula.

    Below is the implementation of the above approach:

    C++

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C++ implementation of the approach
      
    #include <bits/stdc++.h>
    #define PI 3.14159 / 180
    using namespace std;
      
    // Function to return the area of the kite
    float areaOfKite(int a, int b, double angle)
    {
        // convet angle degree to radians
        angle = angle * PI;
        // use above formula
      
        double area = a * b * sin(angle);
        return area;
    }
      
    // Driver code
    int main()
    {
        int a = 4, b = 7, angle = 78;
        cout << "Area of Kite = "
             << areaOfKite(a, b, angle);
      
        return 0;
    }

    chevron_right

    
    

    Java

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // Java implementation of the approach
    import java.io.*;
      
    class GFG
    {
          
    static double PI = (3.14159 / 180);
      
    // Function to return the area of the kite
    static float areaOfKite(int a, int b, double angle)
    {
        // convet angle degree to radians
        angle = angle * PI;
          
        // use above formula
        double area = a * b * Math.sin(angle);
        return (float)area;
    }
      
    // Driver code
    public static void main (String[] args)
    {
      
        int a = 4, b = 7, angle = 78;
        System.out.println ("Area of Kite = " + areaOfKite(a, b, angle));
    }
    }
      
    // This code is contributed by jit_t.

    chevron_right

    
    

    Python3

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # Python implementation of the approach
    import math
    PI = 3.14159 / 180;
      
    # Function to return the area of the kite
    def areaOfKite(a, b, angle):
          
        # convet angle degree to radians
        angle = angle * PI;
          
        # use above formula
      
        area = a * b * math.sin(angle);
        return area;
      
    # Driver code
    a = 4; b = 7; angle = 78;
    print("Area of Kite = ",
            areaOfKite(a, b, angle));
      
    # This code contributed by PrinciRaj1992

    chevron_right

    
    

    C#

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C# implementation of the approach
    using System;
      
    class GFG
    {
        static double PI = (3.14159 / 180);
      
    // Function to return the area of the kite
    static float areaOfKite(int a, int b, double angle)
    {
        // convet angle degree to radians
        angle = angle * PI;
          
        // use above formula
        double area = a * b * Math.Sin(angle);
        return (float)area;
    }
      
    // Driver code
    static public void Main ()
    {
        int a = 4, b = 7, angle = 78;
        Console.WriteLine("Area of Kite = " + areaOfKite(a, b, angle));
    }
    }
      
    // This code is contributed by ajit

    chevron_right

    
    

    Output:

    Area of Kite = 27.3881
    


My Personal Notes arrow_drop_up

Strategy Path planning and Destination matters in success No need to worry about in between temporary failures

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.