# Program to calculate the area of Kite

Kite is something like rhombus but in Kite, the adjacent sides are equal and diagonals are generally not equal.

**Method 1: When bboth the diagonals are given**If diagonals

**d1**and**d2**are given of the kite, then the area of a kite is half of product of both the diagonals i.e.

**Example:****Input:**d1 = 4, d2 = 6**Output:**Area of Kite = 12**Input:**d1 = 5, d2 = 7**Output:**Area of Kite = 17.5**Approach:**In this method we simply use above formula.Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach`

`#include <bits/stdc++.h>`

`using`

`namespace`

`std;`

`// Function to return the area of kite`

`float`

`areaOfKite(`

`int`

`d1,`

`int`

`d2)`

`{`

`// use above formula`

`float`

`area = (d1 * d2) / 2;`

`return`

`area;`

`}`

`// Driver code`

`int`

`main()`

`{`

`int`

`d1 = 4, d2 = 6;`

`cout <<`

`"Area of Kite = "`

`<< areaOfKite(d1, d2);`

`return`

`0;`

`}`

*chevron_right**filter_none*## Java

`// Java implementation of the approach`

`class`

`GFG`

`{`

`// Function to return the area of kite`

`static`

`float`

`areaOfKite(`

`int`

`d1,`

`int`

`d2)`

`{`

`// Use above formula`

`float`

`area = (d1 * d2) /`

`2`

`;`

`return`

`area;`

`}`

`// Driver code`

`public`

`static`

`void`

`main(String[] args)`

`{`

`int`

`d1 =`

`4`

`, d2 =`

`6`

`;`

`System.out.println(`

`"Area of Kite = "`

`+ areaOfKite(d1, d2));`

`}`

`}`

`// This code is contributed by Rajput-Ji`

*chevron_right**filter_none*## Python3

`# Python implementation of the approach`

`# Function to return the area of kite`

`def`

`areaOfKite(d1, d2):`

`# use above formula`

`area`

`=`

`(d1`

`*`

`d2)`

`/`

`2`

`;`

`return`

`area;`

`# Driver code`

`d1`

`=`

`4`

`;`

`d2`

`=`

`6`

`;`

`print`

`(`

`"Area of Kite = "`

`,`

`areaOfKite(d1, d2));`

`# This code is contributed by Rajput-Ji`

*chevron_right**filter_none*## C#

`// C# implementation of the approach`

`using`

`System;`

`class`

`GFG`

`{`

`// Function to return the area of kite`

`static`

`float`

`areaOfKite(`

`int`

`d1,`

`int`

`d2)`

`{`

`// Use above formula`

`float`

`area = (d1 * d2) / 2;`

`return`

`area;`

`}`

`// Driver code`

`public`

`static`

`void`

`Main()`

`{`

`int`

`d1 = 4, d2 = 6;`

`Console.WriteLine(`

`"Area of Kite = "`

`+ areaOfKite(d1, d2));`

`}`

`}`

`// This code is contributed by anuj_67..`

*chevron_right**filter_none***Output:**Area of Kite = 12

**Method 2: When side a, b and angle are given:**

When the unequal sides of kite

**a**and**b**and the included angle**Θ**between them are given, then**Example:****Input:**a = 4, b = 7, θ = 78**Output:**Area of Kite = 27.3881**Input:**a = 6, b = 9, θ = 83**Output:**Area of Kite = 53.5975**Approach:**In this method we simply use above formula.Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach`

`#include <bits/stdc++.h>`

`#define PI 3.14159 / 180`

`using`

`namespace`

`std;`

`// Function to return the area of the kite`

`float`

`areaOfKite(`

`int`

`a,`

`int`

`b,`

`double`

`angle)`

`{`

`// convet angle degree to radians`

`angle = angle * PI;`

`// use above formula`

`double`

`area = a * b *`

`sin`

`(angle);`

`return`

`area;`

`}`

`// Driver code`

`int`

`main()`

`{`

`int`

`a = 4, b = 7, angle = 78;`

`cout <<`

`"Area of Kite = "`

`<< areaOfKite(a, b, angle);`

`return`

`0;`

`}`

*chevron_right**filter_none*## Java

`// Java implementation of the approach`

`import`

`java.io.*;`

`class`

`GFG`

`{`

`static`

`double`

`PI = (`

`3.14159`

`/`

`180`

`);`

`// Function to return the area of the kite`

`static`

`float`

`areaOfKite(`

`int`

`a,`

`int`

`b,`

`double`

`angle)`

`{`

`// convet angle degree to radians`

`angle = angle * PI;`

`// use above formula`

`double`

`area = a * b * Math.sin(angle);`

`return`

`(`

`float`

`)area;`

`}`

`// Driver code`

`public`

`static`

`void`

`main (String[] args)`

`{`

`int`

`a =`

`4`

`, b =`

`7`

`, angle =`

`78`

`;`

`System.out.println (`

`"Area of Kite = "`

`+ areaOfKite(a, b, angle));`

`}`

`}`

`// This code is contributed by jit_t.`

*chevron_right**filter_none*## Python3

`# Python implementation of the approach`

`import`

`math`

`PI`

`=`

`3.14159`

`/`

`180`

`;`

`# Function to return the area of the kite`

`def`

`areaOfKite(a, b, angle):`

`# convet angle degree to radians`

`angle`

`=`

`angle`

`*`

`PI;`

`# use above formula`

`area`

`=`

`a`

`*`

`b`

`*`

`math.sin(angle);`

`return`

`area;`

`# Driver code`

`a`

`=`

`4`

`; b`

`=`

`7`

`; angle`

`=`

`78`

`;`

`print`

`(`

`"Area of Kite = "`

`,`

`areaOfKite(a, b, angle));`

`# This code contributed by PrinciRaj1992`

*chevron_right**filter_none*## C#

`// C# implementation of the approach`

`using`

`System;`

`class`

`GFG`

`{`

`static`

`double`

`PI = (3.14159 / 180);`

`// Function to return the area of the kite`

`static`

`float`

`areaOfKite(`

`int`

`a,`

`int`

`b,`

`double`

`angle)`

`{`

`// convet angle degree to radians`

`angle = angle * PI;`

`// use above formula`

`double`

`area = a * b * Math.Sin(angle);`

`return`

`(`

`float`

`)area;`

`}`

`// Driver code`

`static`

`public`

`void`

`Main ()`

`{`

`int`

`a = 4, b = 7, angle = 78;`

`Console.WriteLine(`

`"Area of Kite = "`

`+ areaOfKite(a, b, angle));`

`}`

`}`

`// This code is contributed by ajit`

*chevron_right**filter_none***Output:**Area of Kite = 27.3881

## Recommended Posts:

- Python Program for Program to calculate area of a Tetrahedron
- Java Program for Program to calculate area of a Tetrahedron
- Program to calculate area of a Tetrahedron
- Program to calculate Area Of Octagon
- Program to calculate area of Enneagon
- Program to calculate area and perimeter of Trapezium
- Program to calculate the area between two Concentric Circles
- Program to calculate area and volume of a Tetrahedron
- Program to calculate Volume and Surface area of Hemisphere
- Program to calculate area of Circumcircle of an Equilateral Triangle
- Program to calculate area of a rhombus whose one side and diagonal are given
- Program to calculate area of an Circle inscribed in a Square
- Program to calculate area and perimeter of a rhombus whose diagonals are given
- Program to calculate area and perimeter of equilateral triangle
- Program to calculate the Surface Area of a Triangular Prism

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.