Program to calculate the area of Kite

Kite is something like rhombus but in Kite, the adjacent sides are equal and diagonals are generally not equal.

  1. Method 1: When bboth the diagonals are given

    If diagonals d1 and d2 are given of the kite, then the area of a kite is half of product of both the diagonals i.e.



     \ Area = \frac{ d1 * d2 } {2} \

    Example:

    Input: d1 = 4, d2 = 6
    Output: Area of Kite  = 12
    
    Input: d1 = 5, d2 = 7
    Output: Area of Kite  = 17.5
    

    Approach: In this method we simply use above formula.

    Below is the implementation of the above approach:

    C++

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C++ implementation of the approach
      
    #include <bits/stdc++.h>
    using namespace std;
      
    // Function to return the area of kite
    float areaOfKite(int d1, int d2)
    {
        // use above formula
        float area = (d1 * d2) / 2;
        return area;
    }
      
    // Driver code
    int main()
    {
        int d1 = 4, d2 = 6;
        cout << "Area of Kite = "
             << areaOfKite(d1, d2);
      
        return 0;
    }

    chevron_right

    
    

    Java

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // Java implementation of the approach
    class GFG 
    {
      
        // Function to return the area of kite
        static float areaOfKite(int d1, int d2)
        {
            // Use above formula
            float area = (d1 * d2) / 2;
            return area;
        }
      
        // Driver code
        public static void main(String[] args)
        {
            int d1 = 4, d2 = 6;
            System.out.println("Area of Kite = "
                    + areaOfKite(d1, d2));
        }
    }
      
    // This code is contributed by Rajput-Ji

    chevron_right

    
    

    Python3

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

        # Python implementation of the approach
      
    # Function to return the area of kite
    def areaOfKite(d1, d2):
      
        # use above formula
        area = (d1 * d2) / 2;
        return area;
      
    # Driver code
    d1 = 4;
    d2 = 6;
    print("Area of Kite = ",
        areaOfKite(d1, d2));
      
    # This code is contributed by Rajput-Ji

    chevron_right

    
    

    C#

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C# implementation of the approach
    using System;
      
    class GFG 
    {
      
    // Function to return the area of kite
    static float areaOfKite(int d1, int d2)
    {
        // Use above formula
        float area = (d1 * d2) / 2;
        return area;
    }
      
    // Driver code
    public static void Main()
    {
        int d1 = 4, d2 = 6;
        Console.WriteLine("Area of Kite = "
                + areaOfKite(d1, d2));
    }
    }
      
    // This code is contributed by anuj_67..

    chevron_right

    
    

    Output:

    Area of Kite = 12
    
  2. Method 2: When side a, b and angle are given:

    When the unequal sides of kite a and b and the included angle Θ between them are given, then

     \ Area = a*b*sin\theta \

    Example:

    Input: a = 4, b = 7, θ = 78
    Output: Area of Kite  = 27.3881
    
    Input: a = 6, b = 9, θ = 83
    Output: Area of Kite  = 53.5975
    
    

    Approach: In this method we simply use above formula.

    Below is the implementation of the above approach:

    C++

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C++ implementation of the approach
      
    #include <bits/stdc++.h>
    #define PI 3.14159 / 180
    using namespace std;
      
    // Function to return the area of the kite
    float areaOfKite(int a, int b, double angle)
    {
        // convet angle degree to radians
        angle = angle * PI;
        // use above formula
      
        double area = a * b * sin(angle);
        return area;
    }
      
    // Driver code
    int main()
    {
        int a = 4, b = 7, angle = 78;
        cout << "Area of Kite = "
             << areaOfKite(a, b, angle);
      
        return 0;
    }

    chevron_right

    
    

    Java

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // Java implementation of the approach
    import java.io.*;
      
    class GFG
    {
          
    static double PI = (3.14159 / 180);
      
    // Function to return the area of the kite
    static float areaOfKite(int a, int b, double angle)
    {
        // convet angle degree to radians
        angle = angle * PI;
          
        // use above formula
        double area = a * b * Math.sin(angle);
        return (float)area;
    }
      
    // Driver code
    public static void main (String[] args)
    {
      
        int a = 4, b = 7, angle = 78;
        System.out.println ("Area of Kite = " + areaOfKite(a, b, angle));
    }
    }
      
    // This code is contributed by jit_t.

    chevron_right

    
    

    Python3

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # Python implementation of the approach
    import math
    PI = 3.14159 / 180;
      
    # Function to return the area of the kite
    def areaOfKite(a, b, angle):
          
        # convet angle degree to radians
        angle = angle * PI;
          
        # use above formula
      
        area = a * b * math.sin(angle);
        return area;
      
    # Driver code
    a = 4; b = 7; angle = 78;
    print("Area of Kite = ",
            areaOfKite(a, b, angle));
      
    # This code contributed by PrinciRaj1992

    chevron_right

    
    

    C#

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C# implementation of the approach
    using System;
      
    class GFG
    {
        static double PI = (3.14159 / 180);
      
    // Function to return the area of the kite
    static float areaOfKite(int a, int b, double angle)
    {
        // convet angle degree to radians
        angle = angle * PI;
          
        // use above formula
        double area = a * b * Math.Sin(angle);
        return (float)area;
    }
      
    // Driver code
    static public void Main ()
    {
        int a = 4, b = 7, angle = 78;
        Console.WriteLine("Area of Kite = " + areaOfKite(a, b, angle));
    }
    }
      
    // This code is contributed by ajit

    chevron_right

    
    

    Output:

    Area of Kite = 27.3881
    



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.