Program to Calculate e^x by Recursion

The value of Exponential function can be calculated using Taylor Series.

e^x = 1 + x/1! + x^2/2! + x^3/3! + ......

To find its value using recursion, we will use static variables. For the power of x we will use p and for factorials we will use f as static variables.
The function shown below is used to increase the power of x.

p = p*x 

The function below is used to find factorials.



f = f*n

The function below is used to calculate the summation of the series.

r+p/f

where r is the recursive call to the function.

Below is the implementation of the above idea.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <stdio.h>
  
// Recursive Function with static
// variables p and f
double e(int x, int n)
{
    static double p = 1, f = 1;
    double r;
  
    // Termination condition
    if (n == 0)
        return 1;
  
    // Recursive call
    r = e(x, n - 1);
  
    // Update the power of x
    p = p * x;
  
    // Factorial
    f = f * n;
  
    return (r + p / f);
}
  
// Driver code
int main()
{
    int x = 4, n = 15;
    printf("%lf \n", e(x, n));
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.text.*;
  
class GFG
{
      
// Recursive Function with static
// variables p and f
static double p = 1, f = 1;
static double e(int x, int n)
{
    double r;
  
    // Termination condition
    if (n == 0)
        return 1;
  
    // Recursive call
    r = e(x, n - 1);
  
    // Update the power of x
    p = p * x;
  
    // Factorial
    f = f * n;
  
    return (r + p / f);
}
  
// Driver code
public static void main (String[] args) 
{
    int x = 4, n = 15;
    DecimalFormat df = new DecimalFormat("0.######");
    System.out.println(df.format(e(x, n)));
  
}
}
  
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation of the approach
  
# Recursive Function 
# global variables p and f
p = 1.0
f = 1.0
  
def e(x, n) :
  
    global p, f
      
    # Termination condition
    if (n == 0) :
        return 1
      
    # Recursive call
    r = e(x, n - 1)
      
    # Update the power of x
    p = p * x
      
    # Factorial
    f = f * n
      
    return (r + p / f)
  
# Driver code
  
x = 4
n = 15
print(e(x, n))
  
# This contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
// Recursive Function with static
// variables p and f
static double p = 1, f = 1;
static double e(int x, int n)
{
    double r;
  
    // Termination condition
    if (n == 0)
        return 1;
  
    // Recursive call
    r = e(x, n - 1);
  
    // Update the power of x
    p = p * x;
  
    // Factorial
    f = f * n;
  
    return (r + p / f);
}
  
// Driver code
static void Main()
{
    int x = 4, n = 15;
    Console.WriteLine(Math.Round(e(x, n),6));
  
}
}
  
// This code is contributed by mits

chevron_right


Output:

54.597883


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Mithun Kumar, ihritik