Program to calculate area of a parallelogram

Given integers A and B denoting the length of sides of a parallelogram and Y that is the angle between the sides and length of diagonals D1 and D2 of the parallelogram and an angle 0 at the intersection of the diagonal, the task is to find the area of the parallelogram from the information provided.

A parallelogram is a type of quadrilateral that has equal and parallel opposite sides and angle between them is not right angle.

Examples:

Input: A = 6, B = 10, 0 = 30
Output: 18.48
Explanation:
For the given sides 6 and 10 and for the angle 30 degree the area of parallelogram will be 18.48.

Input: A = 3, B = 5, Y = 45
Output: 10.61
Explanation:
For the given sides 3 and 5 and for the angle 45 degree the length of diagonal will be 10.61.



Input: D1 = 3, D2 = 5, 0 = 90
Output: 7.5
Explanation:
For the given diagonals 3 and 5 and for the angle 90 degree the area of parallelogram will be 7.5.

Approach: The area of the parallelogram can be calculated by the following three formulas:

 Area of Parallelogram for sides and angle between diagonals = ((A2 – B2) * tan 0) / 2

Area of Parallelogram for sides and angle between sides = A * B * sin Y
 

Area of Parallelogram for diagonals and angle between diagonals = (D1 * D2 * sin 0)/2

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
double toRadians(int degree)
{
  double pi = 3.14159265359;
  return ((double)degree * (pi / 180));
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of diagonal
double Area_Parallelogram1(int a, int b,
                           int theta)
{
  
    // Calculate area of parallelogram
    double area = (abs(tan(toRadians(theta))) / 2) *
                   abs(a * a - b * b);
  
    // Return the answer
    return area;
}
  
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of sides
double Area_Parallelogram2(int a, int b,
                           int gamma)
{    
  // Calculate area of parallelogram
  double area = (abs(sin(toRadians(gamma)))) *
                 abs(a * b);
 
  // Return the answer
  return area;
}
  
// Function to return the area of
// parallelogram using diagonals and
// angle at the intersection of diagonals
static double Area_Parallelogram3(int d1, int d2,
                                  int theta)
{    
  // Calculate area of parallelogram
  double area = (abs(sin(toRadians(theta))) / 2) *
                 abs(d1 * d2);
 
  // Return the answer
  return area;
}
 
  
// Driver Code
int main()
{
  // Given diagonal and angle
  int d1 = 3;
  int d2 = 5;
  int theta = 90;
 
  // Function call
  double area = Area_Parallelogram3(d1,
                                    d2,
                                    theta);
   
  // Print the area
  printf("%.2f", area);
}
 
// This code is contributed by rutvik_56
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for above approach
import java.io.*;
 
class GFG{
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of diagonal
static double Area_Parallelogram1(int a, int b,
                                  int theta)
{
 
    // Calculate area of parallelogram
    double area = (Math.abs(Math.tan(
                   Math.toRadians(theta))) / 2) *
                   Math.abs(a * a - b * b);
 
    // Return the answer
    return area;
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of sides
static double Area_Parallelogram2(int a, int b,
                                  int gamma)
{
     
    // Calculate area of parallelogram
    double area = (Math.abs(Math.sin(
                   Math.toRadians(gamma)))) *
                   Math.abs(a * b);
 
    // Return the answer
    return area;
}
 
// Function to return the area of
// parallelogram using diagonals and
// angle at the intersection of diagonals
static double Area_Parallelogram3(int d1, int d2,
                                  int theta)
{
     
    // Calculate area of parallelogram
    double area = (Math.abs(Math.sin(
                   Math.toRadians(theta))) / 2) *
                   Math.abs(d1 * d2);
 
    // Return the answer
    return area;
}
 
// Driver code
public static void main (String[] args)
{
     
    // Given diagonal and angle
    int d1 = 3;
    int d2 = 5;
    int theta = 90;
     
    // Function call
    double area = Area_Parallelogram3(
                  d1, d2, theta);
     
    // Print the area
    System.out.format("%.2f", area);
}
}
 
// This code is contributed by offbeat
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
import math
 
# Function to return the area of
# parallelogram using sides and
# angle at the intersection of diagonal
def Area_Parallelogram1(a, b, theta):
 
    # Calculate area of parallelogram
    area = (abs(math.tan(math.radians(theta)))/2) \
           * abs(a**2 - b**2)
 
    # Return the answer
    return area
 
# Function to return the area of
# parallelogram using sides and
# angle at the intersection of sides
def Area_Parallelogram2(a, b, gamma):
 
    # Calculate area of parallelogram
    area = (abs(math.sin(math.radians(gamma)))) \
            * abs(a * b)
 
    # Return the answer
    return area
 
# Function to return the area of
# parallelogram using diagonals and
# angle at the intersection of diagonals
def Area_Parallelogram3(d1, d2, theta):
 
    # Calculate area of parallelogram
    area = (abs(math.sin(math.radians(theta)))/2) \
            * abs(d1 * d2)
 
    # Return the answer
    return area
 
 
# Driver Code
 
# Given diagonal and angle
d1 = 3
d2 = 5
theta = 90
 
# Function Call
area = Area_Parallelogram3(d1, d2, theta)
# Print the area
print(round(area, 2))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for
// the above approach
using System;
class GFG{
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of diagonal
static double Area_Parallelogram1(int a, int b,
                                  int theta)
{
  // Calculate area of parallelogram
  double area = (Math.Abs(Math.Tan((theta *
                          Math.PI) / 180)) / 2) *
                 Math.Abs(a * a - b * b);
 
  // Return the answer
  return area;
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of sides
static double Area_Parallelogram2(int a, int b,
                                  int gamma)
{   
  // Calculate area of parallelogram
  double area = (Math.Abs(Math.Sin((gamma *
                          Math.PI) / 180))) *
                 Math.Abs(a * b);
 
  // Return the answer
  return area;
}
 
// Function to return the area of
// parallelogram using diagonals and
// angle at the intersection of diagonals
static double Area_Parallelogram3(int d1, int d2,
                                  int theta)
{   
  // Calculate area of parallelogram
  double area = (Math.Abs(Math.Sin((theta *
                          Math.PI) / 180)) / 2) *
                 Math.Abs(d1 * d2);
 
  // Return the answer
  return area;
}
 
// Driver code
public static void Main(String[] args)
{
  // Given diagonal and angle
  int d1 = 3;
  int d2 = 5;
  int theta = 90;
 
  // Function call
  double area = Area_Parallelogram3(d1, d2, theta);
 
  // Print the area
  Console.Write("{0:F2}", area);
}
}
 
// This code is contributed by Rajput-Ji
chevron_right

Output: 
7.5





 

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : offbeat, Rajput-Ji, rutvik_56

Article Tags :
Practice Tags :