# Program to calculate area and perimeter of a rhombus whose diagonals are given

Given the length of diagonals of a rhombus, d1 and d2. The task is to find the perimeter and the area of that rhombus.
A rhombus is a polygon having 4 equal sides in which both the opposite sides are parallel, and opposite angles are equal.

Examples:

Input: d1 = 2 and d2 = 4
Output: The area of rhombus with diagonals 2 and 4 is 4.
The perimeter of rhombus with diagonals 2 and 4 is 8.

Input: d1 = 100 and d2 = 500
Output: The area of rhombus with diagonals 100 and 500 is 25000.
The perimeter of rhombus with diagonals 100 and 500 is 1019.


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Area of the rhombus =
Perimeterof the rhombus =

Below is the implementation of above approach:

 // C++ Program to calculate area and perimeter  // of a rhombus using diagonals  #include  #include  using namespace std;     // calculate area and perimeter of a rhombus  int rhombusAreaPeri(int d1, int d2)  {      long long int area, perimeter;         area = (d1 * d2) / 2;      perimeter = 2 * sqrt(pow(d1, 2) + pow(d2, 2));         cout << "The area of rhombus with diagonals "           << d1 << " and " << d2 << " is " << area << "." << endl;         cout << "The perimeter of rhombus with diagonals "           << d1 << " and " << d2 << " is " << perimeter << "." << endl;  }     // Driver code  int main()  {         int d1 = 2, d2 = 4;      rhombusAreaPeri(d1, d2);         return 0;  }

 // Java program to calculate area and perimeter  // of a rhombus using diagonals  import java.io.*;     class GFG {       // calculate area and perimeter of a rhombus  static int rhombusAreaPeri(int d1, int d2)  {       int area, perimeter;         area = (d1 * d2) / 2;      perimeter = (int)(2 * Math.sqrt(Math.pow(d1, 2) + Math.pow(d2, 2)));         System.out.println( "The area of rhombus with diagonals "         + d1 + " and " + d2 + " is " + area + ".");         System.out.println("The perimeter of rhombus with diagonals "         +d1 + " and " + d2 + " is " + perimeter + ".");          return 0;  }     // Driver code            public static void main (String[] args) {          int d1 = 2, d2 = 4;      rhombusAreaPeri(d1, d2);      }  }  // This code is contributed by anuj_67..

 # Python 3 Program to calculate   # area and perimeter of a rhombus  # using diagonals  from math import sqrt, pow    # calculate area and perimeter  # of a rhombus  def rhombusAreaPeri(d1, d2):      area = (d1 * d2) / 2     perimeter = 2 * sqrt(pow(d1, 2) +                           pow(d2, 2))         print("The area of rhombus with diagonals",                   d1, "and", d2, "is", area, ".")         print("The perimeter of rhombus with diagonals",                  d1, "and", d2, "is", perimeter, "." )     # Driver code  if __name__ == '__main__':      d1 = 2     d2 = 4     rhombusAreaPeri(d1, d2)     # This code is contributed   # by Surendra_Gangwar

 // C# program to calculate area   // and perimeter of a rhombus   // using diagonals  using System;     class GFG   {     // calculate area and perimeter   // of a rhombus  static int rhombusAreaPeri(int d1,                               int d2)  {      int area, perimeter;         area = (d1 * d2) / 2;      perimeter = (int)(2 * Math.Sqrt(Math.Pow(d1, 2) +                                       Math.Pow(d2, 2)));         Console.WriteLine( "The area of rhombus with " +                          "diagonals " + d1 + " and " +                             d2 + " is " + area + ".");         Console.WriteLine("The perimeter of rhombus " +                         "with diagonals " + d1 + " and " +                           d2 + " is " + perimeter + ".");          return 0;  }     // Driver code  public static void Main ()   {      int d1 = 2, d2 = 4;      rhombusAreaPeri(d1, d2);  }  }     // This code is contributed by anuj_67..

 

Output:
The area of rhombus with diagonals 2 and 4 is 4.
The perimeter of rhombus with diagonals 2 and 4 is 8.


Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Practice Tags :