Add two fraction a/b and c/d and print answer in simplest form.**Examples :**

Input: 1/2 + 3/2 Output: 2/1 Input: 1/3 + 3/9 Output: 2/3 Input: 1/5 + 3/15 Output: 2/5

**Algorithm to add two fractions**

- Find a common denominator by finding the LCM (Least Common Multiple) of the two denominators.
- Change the fractions to have the same denominator and add both terms.
- Reduce the final fraction obtained into its simpler form by dividing both numerator and denominator by there largest common factor.

## C++

`// C++ program to add 2 fractions` `#include<bits/stdc++.h>` `using` `namespace` `std;` `// Function to return gcd of a and b` `int` `gcd(` `int` `a, ` `int` `b)` `{` ` ` `if` `(a == 0)` ` ` `return` `b;` ` ` `return` `gcd(b%a, a);` `}` `// Function to convert the obtained fraction` `// into it's simplest form` `void` `lowest(` `int` `&den3, ` `int` `&num3)` `{` ` ` `// Finding gcd of both terms` ` ` `int` `common_factor = gcd(num3,den3);` ` ` `// Converting both terms into simpler` ` ` `// terms by dividing them by common factor` ` ` `den3 = den3/common_factor;` ` ` `num3 = num3/common_factor;` `}` `//Function to add two fractions` `void` `addFraction(` `int` `num1, ` `int` `den1, ` `int` `num2,` ` ` `int` `den2, ` `int` `&num3, ` `int` `&den3)` `{` ` ` `// Finding gcd of den1 and den2` ` ` `den3 = gcd(den1,den2);` ` ` `// Denominator of final fraction obtained` ` ` `// finding LCM of den1 and den2` ` ` `// LCM * GCD = a * b` ` ` `den3 = (den1*den2) / den3;` ` ` `// Changing the fractions to have same denominator` ` ` `// Numerator of the final fraction obtained` ` ` `num3 = (num1)*(den3/den1) + (num2)*(den3/den2);` ` ` `// Calling function to convert final fraction` ` ` `// into it's simplest form` ` ` `lowest(den3,num3);` `}` `// Driver program` `int` `main()` `{` ` ` `int` `num1=1, den1=500, num2=2, den2=1500, den3, num3;` ` ` `addFraction(num1, den1, num2, den2, num3, den3);` ` ` `printf` `(` `"%d/%d + %d/%d is equal to %d/%d\n"` `, num1, den1,` ` ` `num2, den2, num3, den3);` ` ` `return` `0;` `}` |

## Java

`// Java program to add 2 fractions` `class` `GFG{` `// Function to return gcd of a and b` `static` `int` `gcd(` `int` `a, ` `int` `b)` `{` ` ` `if` `(a == ` `0` `)` ` ` `return` `b;` ` ` `return` `gcd(b%a, a);` `}` `// Function to convert the obtained fraction` `// into it's simplest form` `static` `void` `lowest(` `int` `den3, ` `int` `num3)` `{` ` ` `// Finding gcd of both terms` ` ` `int` `common_factor = gcd(num3,den3);` ` ` `// Converting both terms into simpler` ` ` `// terms by dividing them by common factor` ` ` `den3 = den3/common_factor;` ` ` `num3 = num3/common_factor;` ` ` `System.out.println(num3+` `"/"` `+den3);` `}` `//Function to add two fractions` `static` `void` `addFraction(` `int` `num1, ` `int` `den1,` ` ` `int` `num2, ` `int` `den2)` `{` ` ` `// Finding gcd of den1 and den2` ` ` `int` `den3 = gcd(den1,den2);` ` ` `// Denominator of final fraction obtained` ` ` `// finding LCM of den1 and den2` ` ` `// LCM * GCD = a * b` ` ` `den3 = (den1*den2) / den3;` ` ` `// Changing the fractions to have same denominator` ` ` `// Numerator of the final fraction obtained` ` ` `int` `num3 = (num1)*(den3/den1) + (num2)*(den3/den2);` ` ` `// Calling function to convert final fraction` ` ` `// into it's simplest form` ` ` `lowest(den3,num3);` `}` `// Driver program` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `num1=` `1` `, den1=` `500` `, num2=` `2` `, den2=` `1500` `;` ` ` `System.out.print(num1+` `"/"` `+den1+` `" + "` `+num2+` `"/"` `+den2+` `" is equal to "` `);` ` ` `addFraction(num1, den1, num2, den2);` `}` `}` `// This code is contributed by mits` |

## Python3

`# Python3 program to add 2 fractions` `# Function to return gcd of a and b` `def` `gcd(a, b):` ` ` `if` `(a ` `=` `=` `0` `):` ` ` `return` `b;` ` ` `return` `gcd(b ` `%` `a, a);` `# Function to convert the obtained` `# fraction into it's simplest form` `def` `lowest(den3, num3):` ` ` `# Finding gcd of both terms` ` ` `common_factor ` `=` `gcd(num3, den3);` ` ` `# Converting both terms` ` ` `# into simpler terms by` ` ` `# dividing them by common factor` ` ` `den3 ` `=` `int` `(den3 ` `/` `common_factor);` ` ` `num3 ` `=` `int` `(num3 ` `/` `common_factor);` ` ` `print` `(num3, ` `"/"` `, den3);` `# Function to add two fractions` `def` `addFraction(num1, den1, num2, den2):` ` ` `# Finding gcd of den1 and den2` ` ` `den3 ` `=` `gcd(den1, den2);` ` ` `# Denominator of final` ` ` `# fraction obtained finding` ` ` `# LCM of den1 and den2` ` ` `# LCM * GCD = a * b` ` ` `den3 ` `=` `(den1 ` `*` `den2) ` `/` `den3;` ` ` `# Changing the fractions to` ` ` `# have same denominator Numerator` ` ` `# of the final fraction obtained` ` ` `num3 ` `=` `((num1) ` `*` `(den3 ` `/` `den1) ` `+` ` ` `(num2) ` `*` `(den3 ` `/` `den2));` ` ` `# Calling function to convert` ` ` `# final fraction into it's` ` ` `# simplest form` ` ` `lowest(den3, num3);` `# Driver Code` `num1 ` `=` `1` `; den1 ` `=` `500` `;` `num2 ` `=` `2` `; den2 ` `=` `1500` `;` `print` `(num1, ` `"/"` `, den1, ` `" + "` `, num2, ` `"/"` `,` ` ` `den2, ` `" is equal to "` `, end ` `=` `"");` `addFraction(num1, den1, num2, den2);` `# This code is contributed by mits` |

## C#

`// C# program to add 2 fractions` `class` `GFG{` `// Function to return gcd of a and b` `static` `int` `gcd(` `int` `a, ` `int` `b)` `{` ` ` `if` `(a == 0)` ` ` `return` `b;` ` ` `return` `gcd(b%a, a);` `}` `// Function to convert the obtained fraction` `// into it's simplest form` `static` `void` `lowest(` `int` `den3, ` `int` `num3)` `{` ` ` `// Finding gcd of both terms` ` ` `int` `common_factor = gcd(num3,den3);` ` ` `// Converting both terms into simpler` ` ` `// terms by dividing them by common factor` ` ` `den3 = den3/common_factor;` ` ` `num3 = num3/common_factor;` ` ` `System.Console.WriteLine(num3+` `"/"` `+den3);` `}` `//Function to add two fractions` `static` `void` `addFraction(` `int` `num1, ` `int` `den1, ` `int` `num2, ` `int` `den2)` `{` ` ` `// Finding gcd of den1 and den2` ` ` `int` `den3 = gcd(den1,den2);` ` ` `// Denominator of final fraction obtained` ` ` `// finding LCM of den1 and den2` ` ` `// LCM * GCD = a * b` ` ` `den3 = (den1*den2) / den3;` ` ` `// Changing the fractions to have same denominator` ` ` `// Numerator of the final fraction obtained` ` ` `int` `num3 = (num1)*(den3/den1) + (num2)*(den3/den2);` ` ` `// Calling function to convert final fraction` ` ` `// into it's simplest form` ` ` `lowest(den3,num3);` `}` `// Driver program` `public` `static` `void` `Main()` `{` ` ` `int` `num1=1, den1=500, num2=2, den2=1500;` ` ` `System.Console.Write(num1+` `"/"` `+den1+` `" + "` `+num2+` `"/"` `+den2+` `" is equal to "` `);` ` ` `addFraction(num1, den1, num2, den2);` `}` `}` `// This code is contributed by mits` |

## PHP

`<?php` `// PHP program to add` `// 2 fractions` `// Function to return` `// gcd of a and b` `function` `gcd(` `$a` `, ` `$b` `)` `{` ` ` `if` `(` `$a` `== 0)` ` ` `return` `$b` `;` ` ` `return` `gcd(` `$b` `% ` `$a` `, ` `$a` `);` `}` `// Function to convert the` `// obtained fraction into` `// it's simplest form` `function` `lowest(&` `$den3` `, &` `$num3` `)` `{` ` ` `// Finding gcd of both terms` ` ` `$common_factor` `= gcd(` `$num3` `, ` `$den3` `);` ` ` `// Converting both terms ` ` ` `// into simpler terms by` ` ` `// dividing them by common factor` ` ` ` ` `$den3` `= (int)` `$den3` `/ ` `$common_factor` `;` ` ` `$num3` `= (int) ` `$num3` `/ ` `$common_factor` `;` `}` `// Function to add` `// two fractions` `function` `addFraction(` `$num1` `, ` `$den1` `, ` `$num2` `,` ` ` `$den2` `, &` `$num3` `, &` `$den3` `)` `{` ` ` `// Finding gcd of den1 and den2` ` ` `$den3` `= gcd(` `$den1` `, ` `$den2` `);` ` ` `// Denominator of final` ` ` `// fraction obtained finding` ` ` `// LCM of den1 and den2` ` ` `// LCM * GCD = a * b` ` ` `$den3` `= (` `$den1` `* ` `$den2` `) / ` `$den3` `;` ` ` `// Changing the fractions to` ` ` `// have same denominator Numerator` ` ` `// of the final fraction obtained` ` ` `$num3` `= (` `$num1` `) * (` `$den3` `/ ` `$den1` `) +` ` ` `(` `$num2` `) * (` `$den3` `/ ` `$den2` `);` ` ` `// Calling function to convert` ` ` `// final fraction into it's` ` ` `// simplest form` ` ` `lowest(` `$den3` `, ` `$num3` `);` `}` `// Driver Code` `$num1` `= 1; ` `$den1` `= 500;` `$num2` `= 2; ` `$den2` `= 1500;` `$den3` `; ` `$num3` `;` `addFraction(` `$num1` `, ` `$den1` `, ` `$num2` `,` ` ` `$den2` `, ` `$num3` `, ` `$den3` `);` `echo` `$num1` `, ` `"/"` `, ` `$den1` `, ` `" + "` `,` ` ` `$num2` `,` `"/"` `, ` `$den2` `, ` `" is equal to "` `,` ` ` `$num3` `, ` `"/"` `, ` `$den3` `, ` `"\n"` `;` ` ` `// This code is contributed by aj_36` `?>` |

## Javascript

`<script>` `// Javascript program to add 2 fractions` ` ` `// Function to return gcd of a and b` `const gcd = (a, b) => {` ` ` `if` `(a == 0)` ` ` `return` `b;` ` ` `return` `gcd(b % a, a);` `}` `// Function to convert the ` `// obtained fraction into ` `// it's simplest form` `const lowest = (den3, num3) => {` ` ` `// Finding gcd of both terms` ` ` `let common_factor = gcd(num3, den3);` ` ` ` ` `// Converting both terms ` ` ` `// into simpler terms by ` ` ` `// dividing them by common factor ` ` ` ` ` `den3 = parseInt(den3 / common_factor);` ` ` `num3 = parseInt(num3 / common_factor);` ` ` ` ` `document.write(`${num3}/${den3}`)` `}` `// Function to add two fractions` `const addFraction = (num1, den1, num2, den2) => {` ` ` `// Finding gcd of den1 and den2` ` ` `let den3 = gcd(den1, den2);` ` ` ` ` `// Denominator of final ` ` ` `// fraction obtained finding ` ` ` `// LCM of den1 and den2` ` ` `// LCM * GCD = a * b ` ` ` `den3 = (den1 * den2) / den3;` ` ` ` ` `// Changing the fractions to ` ` ` `// have same denominator Numerator` ` ` `// of the final fraction obtained` ` ` `let num3 = ((num1) * (den3 / den1) +` ` ` `(num2) * (den3 / den2));` ` ` ` ` `// Calling function to convert ` ` ` `// final fraction into it's ` ` ` `// simplest form` ` ` `lowest(den3, num3);` `}` `// Driver Code` `let num1 = 1;` `let den1 = 500; ` `let num2 = 2;` `let den2 = 1500; ` `document.write(`${num1}/${den1} + ${num2}/${den2} is equal to `);` `addFraction(num1, den1, num2, den2);` ` ` `// This code is contributed by _saurabh_jaiswal` `</script>` |

**Output :**

1/500 + 2/1500 is equal to 1/300

See below for doing the same using library functions.

Ratio Manipulations in C++ | Set 1 (Arithmetic)

This article is contributed by **Rahul Agrawal **.If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**