# Program to add two fractions

Add two fraction a/b and c/d and print answer in simplest form.

Examples :

```Input:  1/2 + 3/2
Output: 2/1

Input:  1/3 + 3/9
Output: 2/3

Input:  1/5 + 3/15
Output: 2/5
```

## Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

• Find a common denominator by finding the LCM (Least Common Multiple) of the two denominators.
• Change the fractions to have the same denominator and add both terms.
• Reduce the final fraction obtained into its simpler form by dividing both numerator and denominator by there largest common factor.

## C++

 `// C++ program to add 2 fractions ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return gcd of a and b ` `int` `gcd(``int` `a, ``int` `b) ` `{ ` `    ``if` `(a == 0) ` `        ``return` `b; ` `    ``return` `gcd(b%a, a); ` `} ` ` `  `// Function to convert the obtained fraction ` `// into it's simplest form ` `void` `lowest(``int` `&den3, ``int` `&num3) ` `{ ` `    ``// Finding gcd of both terms ` `    ``int` `common_factor = gcd(num3,den3); ` ` `  `    ``// Converting both terms into simpler  ` `    ``// terms by dividing them by common factor  ` `    ``den3 = den3/common_factor; ` `    ``num3 = num3/common_factor; ` `} ` ` `  `//Function to add two fractions ` `void` `addFraction(``int` `num1, ``int` `den1, ``int` `num2,  ` `                 ``int` `den2, ``int` `&num3, ``int` `&den3) ` `{ ` `    ``// Finding gcd of den1 and den2 ` `    ``den3 = gcd(den1,den2); ` ` `  `    ``// Denominator of final fraction obtained ` `    ``// finding LCM of den1 and den2 ` `    ``// LCM * GCD = a * b  ` `    ``den3 = (den1*den2) / den3; ` ` `  `    ``// Changing the fractions to have same denominator ` `    ``// Numerator of the final fraction obtained ` `    ``num3 = (num1)*(den3/den1) + (num2)*(den3/den2); ` ` `  `    ``// Calling function to convert final fraction ` `    ``// into it's simplest form ` `    ``lowest(den3,num3); ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``int` `num1=1, den1=500, num2=2, den2=1500, den3, num3; ` `    ``addFraction(num1, den1, num2, den2, num3, den3); ` `    ``printf``(``"%d/%d + %d/%d is equal to %d/%d\n"``, num1, den1, ` `                                   ``num2, den2, num3, den3); ` `    ``return` `0; ` `} `

## Java

 `// Java program to add 2 fractions  ` ` `  `class` `GFG{ ` `// Function to return gcd of a and b  ` `static` `int` `gcd(``int` `a, ``int` `b)  ` `{  ` `    ``if` `(a == ``0``)  ` `        ``return` `b;  ` `    ``return` `gcd(b%a, a);  ` `}  ` ` `  `// Function to convert the obtained fraction  ` `// into it's simplest form  ` `static` `void` `lowest(``int` `den3, ``int` `num3)  ` `{  ` `    ``// Finding gcd of both terms  ` `    ``int` `common_factor = gcd(num3,den3);  ` ` `  `    ``// Converting both terms into simpler  ` `    ``// terms by dividing them by common factor  ` `    ``den3 = den3/common_factor;  ` `    ``num3 = num3/common_factor; ` `    ``System.out.println(num3+``"/"``+den3); ` `}  ` ` `  `//Function to add two fractions  ` `static` `void` `addFraction(``int` `num1, ``int` `den1,  ` `                        ``int` `num2, ``int` `den2)  ` `{  ` `    ``// Finding gcd of den1 and den2  ` `    ``int` `den3 = gcd(den1,den2);  ` ` `  `    ``// Denominator of final fraction obtained  ` `    ``// finding LCM of den1 and den2  ` `    ``// LCM * GCD = a * b  ` `    ``den3 = (den1*den2) / den3;  ` ` `  `    ``// Changing the fractions to have same denominator  ` `    ``// Numerator of the final fraction obtained  ` `    ``int` `num3 = (num1)*(den3/den1) + (num2)*(den3/den2);  ` ` `  `    ``// Calling function to convert final fraction  ` `    ``// into it's simplest form  ` `    ``lowest(den3,num3);  ` `}  ` ` `  `// Driver program  ` `public` `static` `void` `main(String[] args)  ` `{  ` `    ``int` `num1=``1``, den1=``500``, num2=``2``, den2=``1500``;  ` `    ``System.out.print(num1+``"/"``+den1+``" + "``+num2+``"/"``+den2+``" is equal to "``); ` `    ``addFraction(num1, den1, num2, den2); ` `}  ` `} ` `// This code is contributed by mits `

## Python3

 `# Python3 program to add 2 fractions  ` ` `  `# Function to return gcd of a and b  ` `def` `gcd(a, b): ` `    ``if` `(a ``=``=` `0``):  ` `        ``return` `b;  ` `    ``return` `gcd(b ``%` `a, a);  ` ` `  `# Function to convert the obtained  ` `# fraction into it's simplest form  ` `def` `lowest(den3, num3):  ` ` `  `    ``# Finding gcd of both terms  ` `    ``common_factor ``=` `gcd(num3, den3);  ` ` `  `    ``# Converting both terms  ` `    ``# into simpler terms by  ` `    ``# dividing them by common factor  ` `    ``den3 ``=` `int``(den3 ``/` `common_factor);  ` `    ``num3 ``=` `int``(num3 ``/` `common_factor); ` `    ``print``(num3, ``"/"``, den3); ` ` `  `# Function to add two fractions  ` `def` `addFraction(num1, den1, num2, den2):  ` ` `  `    ``# Finding gcd of den1 and den2  ` `    ``den3 ``=` `gcd(den1, den2);  ` ` `  `    ``# Denominator of final  ` `    ``# fraction obtained finding  ` `    ``# LCM of den1 and den2  ` `    ``# LCM * GCD = a * b  ` `    ``den3 ``=` `(den1 ``*` `den2) ``/` `den3;  ` ` `  `    ``# Changing the fractions to  ` `    ``# have same denominator Numerator  ` `    ``# of the final fraction obtained  ` `    ``num3 ``=` `((num1) ``*` `(den3 ``/` `den1) ``+`  `            ``(num2) ``*` `(den3 ``/` `den2));  ` ` `  `    ``# Calling function to convert  ` `    ``# final fraction into it's  ` `    ``# simplest form  ` `    ``lowest(den3, num3);  ` ` `  `# Driver Code  ` `num1 ``=` `1``; den1 ``=` `500``;  ` `num2 ``=` `2``; den2 ``=` `1500``;  ` ` `  `print``(num1, ``"/"``, den1, ``" + "``, num2, ``"/"``,  ` `      ``den2, ``" is equal to "``, end ``=` `"");  ` `addFraction(num1, den1, num2, den2); ` ` `  `# This code is contributed by mits `

## C#

 `// C# program to add 2 fractions  ` ` `  `class` `GFG{ ` `// Function to return gcd of a and b  ` `static` `int` `gcd(``int` `a, ``int` `b)  ` `{  ` `    ``if` `(a == 0)  ` `        ``return` `b;  ` `    ``return` `gcd(b%a, a);  ` `}  ` ` `  `// Function to convert the obtained fraction  ` `// into it's simplest form  ` `static` `void` `lowest(``int` `den3, ``int` `num3)  ` `{  ` `    ``// Finding gcd of both terms  ` `    ``int` `common_factor = gcd(num3,den3);  ` ` `  `    ``// Converting both terms into simpler  ` `    ``// terms by dividing them by common factor  ` `    ``den3 = den3/common_factor;  ` `    ``num3 = num3/common_factor; ` `    ``System.Console.WriteLine(num3+``"/"``+den3); ` `}  ` ` `  `//Function to add two fractions  ` `static` `void` `addFraction(``int` `num1, ``int` `den1, ``int` `num2, ``int` `den2)  ` `{  ` `    ``// Finding gcd of den1 and den2  ` `    ``int` `den3 = gcd(den1,den2);  ` ` `  `    ``// Denominator of final fraction obtained  ` `    ``// finding LCM of den1 and den2  ` `    ``// LCM * GCD = a * b  ` `    ``den3 = (den1*den2) / den3;  ` ` `  `    ``// Changing the fractions to have same denominator  ` `    ``// Numerator of the final fraction obtained  ` `    ``int` `num3 = (num1)*(den3/den1) + (num2)*(den3/den2);  ` ` `  `    ``// Calling function to convert final fraction  ` `    ``// into it's simplest form  ` `    ``lowest(den3,num3);  ` `}  ` ` `  `// Driver program  ` `public` `static` `void` `Main()  ` `{  ` `    ``int` `num1=1, den1=500, num2=2, den2=1500;  ` `    ``System.Console.Write(num1+``"/"``+den1+``" + "``+num2+``"/"``+den2+``" is equal to "``); ` `    ``addFraction(num1, den1, num2, den2); ` `}  ` `} ` `// This code is contributed by mits `

## PHP

 ` `

Output :

```1/500 + 2/1500 is equal to 1/300
```

See below for doing the same using library functions.
Ratio Manipulations in C++ | Set 1 (Arithmetic)

This article is contributed by Rahul Agrawal .If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : jit_t, Mithun Kumar

Article Tags :
Practice Tags :

4

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.