Related Articles

Related Articles

Program to access different columns of a multidimensional Numpy array
  • Last Updated : 01 Nov, 2020

Prerequisite: Numpy module

The following article discusses how we can access different columns of multidimensional Numpy array. Here, we are using Slicing method to obtain the required functionality. 

Example 1: (Accessing the First and Last column of Numpy array)

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Numpy module
import numpy as np
  
# Creating a 3x3 Numpy array
arr = np.array([[11, 20, 3], 
                [89, 5, 66], 
                [71, 88, 39]])
  
print("Given Array :")
print(arr)
  
# Access the First and Last column of array
res_arr = arr[:,[0,2]]
print("\nAccessed Columns :")
print(res_arr)

chevron_right


Output:



Given Array :

[[11 20  3]

[89  5 66]

[71 88 39]]

Accessed Columns :

[[11  3]

[89 66]

[71 39]]

Example 2: (Accessing the Middle and Last column of Numpy array)

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Numpy module
import numpy as np
  
# Creating a 4x4 Numpy array
arr = np.array([[1, 20, 3, 1], 
                [40, 5, 66, 7], 
                [70, 88, 9, 11],
               [80, 100, 50, 77]])
  
print("Given Array :")
print(arr)
  
# Access the Middle and Last column of array
res_arr = arr[:,[1,3]]
print("\nAccessed Columns :")
print(res_arr)

chevron_right


Output:

Given Array :

[[  1  20   3   1]

[ 40   5  66   7]

[ 70  88   9  11]

[ 80 100  50  77]]

Accessed Columns :

[[ 20   1]



[  5   7]

[ 88  11]

[100  77]]

Example 3: (Accessing the Last two columns of Numpy array)

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Numpy module
import numpy as np
  
# Creating a 3d (3X4X4) Numpy array
arr = np.array([[[21, 20, 3, 1], 
                [40, 5, 66, 7], 
                [70, 88, 9, 11],
               [80, 100, 50, 77]],
  
               [[65, 120, 53, 73], 
                [49, 50, 56, 11], 
                [81, 88, 34, 22],
               [564,56, 76, 99]],
                 
               [[45, 85, 38, 455], 
                [40, 53, 69, 6], 
                [50, 528, 654, 11],
               [54, 87, 78, 77]]])
  
print("Given Array :")
print(arr)
  
# Access the Last two columns of array
res_arr = arr[2,:,[2,3]]
print("\nAccessed Columns :")
print(res_arr)

chevron_right


Output:

Given Array :

[[[ 21  20   3   1]

 [ 40   5  66   7]

 [ 70  88   9  11]



 [ 80 100  50  77]]

[[ 65 120  53  73]

 [ 49  50  56  11]

 [ 81  88  34  22]

 [564  56  76  99]]

[[ 45  85  38 455]

 [ 40  53  69   6]

 [ 50 528 654  11]

 [ 54  87  78  77]]]

Accessed Columns :

[[ 38  69 654  78]

[455   6  11  77]]

Example 4: (Accessing the First column of a 4D Numpy array)

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Numpy module
import numpy as np
  
# Creating a 4D Numpy array
arr = np.array([
  [
    [
      [1,2],
      [3,4]
    ],
    [
      [5,6],
      [7,8]
    ]
  ],
   [
    [
      [9,10],
      [11,12]
    ],
    [
      [13,14],
      [15,16]
    ]
  ]
  
])
  
print("Given Array :")
print(arr)
  
# Access the First three columns of array
res_arr = arr[0,0,:,[0]]
print("\nAccessed Columns :")
print(res_arr)

chevron_right


Output:

Given Array :

[[[[ 1  2]

  [ 3  4]]

 [[ 5  6]

  [ 7  8]]]

[[[ 9 10]

  [11 12]]

 [[13 14]

  [15 16]]]]

Accessed Columns :

[[1 3]]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :