# Program for sum of arithmetic series

• Difficulty Level : Easy
• Last Updated : 01 Apr, 2021

A series with same common difference is known as arithmetic series. The first term of series is a and common difference is d. The series is looks like a, a + d, a + 2d, a + 3d, . . . Task is to find the sum of series.
Examples:

```Input : a = 1
d = 2
n = 4
Output : 16
1 + 3 + 5 + 7 = 16

Input : a = 2.5
d = 1.5
n = 20
Output : 335```

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

A simple solution to find sum of arithmetic series.

## C++

 `// CPP Program to find the sum of arithmetic``// series.``#include``using` `namespace` `std;` `// Function to find sum of series.``float` `sumOfAP(``float` `a, ``float` `d, ``int` `n)``{``    ``float` `sum = 0;``    ``for` `(``int` `i=0;i

## Java

 `// JAVA Program to find the sum of``// arithmetic series.` `class` `GFG{``    ` `    ``// Function to find sum of series.``    ``static` `float` `sumOfAP(``float` `a, ``float` `d,``                                  ``int` `n)``    ``{``        ``float` `sum = ``0``;``        ``for` `(``int` `i = ``0``; i < n; i++)``        ``{``            ``sum = sum + a;``            ``a = a + d;``        ``}``        ``return` `sum;``    ``}``    ` `    ``// Driver function``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `n = ``20``;``        ``float` `a = ``2``.5f, d = ``1``.5f;``        ``System.out.println(sumOfAP(a, d, n));``    ``}``}` `/*This code is contributed by Nikita Tiwari.*/`

## Python

 `# Python Program to find the sum of``# arithmetic series.` `# Function to find sum of series.``def` `sumOfAP( a, d,n) :``    ``sum` `=` `0``    ``i ``=` `0``    ``while` `i < n :``        ``sum` `=` `sum` `+` `a``        ``a ``=` `a ``+` `d``        ``i ``=` `i ``+` `1``    ``return` `sum``    ` `# Driver function``n ``=` `20``a ``=` `2.5``d ``=` `1.5``print` `(sumOfAP(a, d, n))` `# This code is contributed by Nikita Tiwari.`

## C#

 `// C# Program to find the sum of``// arithmetic series.``using` `System;` `class` `GFG {``    ` `    ``// Function to find sum of series.``    ``static` `float` `sumOfAP(``float` `a, ``float` `d,``                                    ``int` `n)``    ``{``        ``float` `sum = 0;``        ``for` `(``int` `i = 0; i < n; i++)``        ``{``            ``sum = sum + a;``            ``a = a + d;``        ``}``        ` `        ``return` `sum;``    ``}``    ` `    ``// Driver function``    ``public` `static` `void` `Main()``    ``{``        ``int` `n = 20;``        ``float` `a = 2.5f, d = 1.5f;``        ` `        ``Console.Write(sumOfAP(a, d, n));``    ``}``}` `// This code is contributed by parashar.`

## PHP

 ``

## Javascript

 ``

Output:

`335`

Time Complexity: O(n)
An Efficient solution to find the sum of arithmetic series is to use below formula.

```Sum of arithmetic series
= ((n / 2) * (2 * a + (n - 1) * d))
Where
a - First term
d - Common difference
n - No of terms```

## C++

 `// Efficient solution to find sum of arithmetic series.``#include``using` `namespace` `std;` `float` `sumOfAP(``float` `a, ``float` `d, ``float` `n)``{``    ``float` `sum = (n / 2) * (2 * a + (n - 1) * d);``    ``return` `sum;``}` `// Driver code``int` `main()``{``    ``float` `n = 20;``    ``float` `a = 2.5, d = 1.5;``    ``cout<

## Java

 `// Java Efficient solution to find``// sum of arithmetic series.``class` `GFG``{``    ``static` `float` `sumOfAP(``float` `a, ``float` `d, ``float` `n)``    ``{``        ``float` `sum = (n / ``2``) * (``2` `* a + (n - ``1``) * d);``        ``return` `sum;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``float` `n = ``20``;``        ``float` `a = ``2``.5f, d = ``1``.5f;``        ``System.out.print(sumOfAP(a, d, n));``    ``}``}` `// This code is contributed by Anant Agarwal.`

## Python3

 `# Python3 Efficient``# solution to find sum``# of arithmetic series.` `def`  `sumOfAP(a,  d,  n):``    ``sum` `=` `(n ``/` `2``) ``*` `(``2` `*` `a ``+` `(n ``-` `1``) ``*` `d)``    ``return` `sum``    ` `# Driver code   ``n ``=` `20``a ``=` `2.5``d ``=` `1.5` `print``(sumOfAP(a, d, n))` `# This code is``# contributed by sunnysingh`` `

## C#

 `// C# efficient solution to find``// sum of arithmetic series.``using` `System;` `class` `GFG {``    ` `    ``static` `float` `sumOfAP(``float` `a,``                         ``float` `d,``                         ``float` `n)``    ``{``        ``float` `sum = (n / 2) *``                    ``(2 * a +``                    ``(n - 1) * d);``        ``return` `sum;``    ``}``    ` `    ``// Driver code``    ``static` `public` `void` `Main ()``    ``{``        ``float` `n = 20;``        ``float` `a = 2.5f, d = 1.5f;``        ``Console.WriteLine(sumOfAP(a, d, n));``    ``}``}` `// This code is contributed by Ajit.`

## PHP

 ``

## Javascript

 `// Efficient solution to find sum of arithmetic series.` `function` `sumOfAP(a, d, n) {``    ``let sum = (n / 2) * (2 * a + (n - 1) * d);``    ``return` `sum;``}` `// Driver code``let n = 20;``let a = 2.5, d = 1.5;``document.write(sumOfAP(a, d, n));` `// This code is contributed by Ashok`
Output
`335`

Time Complexity: O(1)
How does this formula work?
We can prove the formula using mathematical induction. We can easily see that the formula holds true for n = 1 and n = 2. Let this be true for n = k-1.

```Let the formula be true for n = k-1.
Sum of first k - 1 elements of geometric series is
= (((k-1))/ 2) * (2 * a + (k - 2) * d))
We know k-th term of arithmetic series is
= a + (k - 1)*d

Sum of first k elements =
= Sum of (k-1) numbers + k-th element
= (((k-1)/2)*(2*a + (k-2)*d)) + (a + (k-1)*d)
= [((k-1)(2a + (k-2)d) + (2a + 2kd - 2d)]/2
= ((k / 2) * (2 * a + (k - 1) * d))```

This article is contributed by Dharmendra kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.