Skip to content
Related Articles

Related Articles

Program for subtraction of matrices
  • Difficulty Level : Basic
  • Last Updated : 23 Feb, 2021

The below program subtracts of two square matrices of size 4*4, we can change N for different dimension. 

C++




// C++ program for subtraction of matrices
#include <bits/stdc++.h>
using namespace std;
#define N 4
 
// This function subtracts B[][] from A[][], and stores
// the result in C[][]
void subtract(int A[][N], int B[][N], int C[][N])
{
    int i, j;
    for (i = 0; i < N; i++)
        for (j = 0; j < N; j++)
            C[i][j] = A[i][j] - B[i][j];
}
 
// Driver code
int main()
{
    int A[N][N] = { {1, 1, 1, 1},
                    {2, 2, 2, 2},
                    {3, 3, 3, 3},
                    {4, 4, 4, 4}};
 
    int B[N][N] = { {1, 1, 1, 1},
                    {2, 2, 2, 2},
                    {3, 3, 3, 3},
                    {4, 4, 4, 4}};
 
    int C[N][N]; // To store result
    int i, j;
    subtract(A, B, C);
 
    cout << "Result matrix is " << endl;
    for (i = 0; i < N; i++)
    {
        for (j = 0; j < N; j++)
        cout << C[i][j] << " ";
        cout << endl;
    }
 
    return 0;
}
 
// This code is contributed by rathbhupendra


C




#include <stdio.h>
#define N 4
 
// This function subtracts B[][] from A[][], and stores
// the result in C[][]
void subtract(int A[][N], int B[][N], int C[][N])
{
    int i, j;
    for (i = 0; i < N; i++)
        for (j = 0; j < N; j++)
            C[i][j] = A[i][j] - B[i][j];
}
 
int main()
{
    int A[N][N] = { {1, 1, 1, 1},
                    {2, 2, 2, 2},
                    {3, 3, 3, 3},
                    {4, 4, 4, 4}};
 
    int B[N][N] = { {1, 1, 1, 1},
                    {2, 2, 2, 2},
                    {3, 3, 3, 3},
                    {4, 4, 4, 4}};
 
    int C[N][N]; // To store result
    int i, j;
    subtract(A, B, C);
 
    printf("Result matrix is \n");
    for (i = 0; i < N; i++)
    {
        for (j = 0; j < N; j++)
           printf("%d ", C[i][j]);
        printf("\n");
    }
 
    return 0;
}


Java




// Java program for subtraction of matrices
 
class GFG
{
     static final int N=4;
 
    // This function subtracts B[][]
    // from A[][], and stores
    // the result in C[][]
    static void subtract(int A[][], int B[][], int C[][])
    {
        int i, j;
        for (i = 0; i < N; i++)
            for (j = 0; j < N; j++)
                C[i][j] = A[i][j] - B[i][j];
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int A[][] = { {1, 1, 1, 1},
                        {2, 2, 2, 2},
                        {3, 3, 3, 3},
                        {4, 4, 4, 4}};
     
        int B[][] = { {1, 1, 1, 1},
                        {2, 2, 2, 2},
                        {3, 3, 3, 3},
                        {4, 4, 4, 4}};
                         
        // To store result
        int C[][]=new int[N][N];
 
        int i, j;
        subtract(A, B, C);
     
        System.out.print("Result matrix is \n");
        for (i = 0; i < N; i++)
        {
            for (j = 0; j < N; j++)
            System.out.print(C[i][j] + " ");
            System.out.print("\n");
        }
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python 3 program for subtraction
# of matrices
 
N = 4
 
# This function returns 1
# if A[][] and B[][] are identical
# otherwise returns 0
def subtract(A, B, C):
     
    for i in range(N):
        for j in range(N):
            C[i][j] = A[i][j] - B[i][j]
 
# Driver Code
A = [ [1, 1, 1, 1],
      [2, 2, 2, 2],
      [3, 3, 3, 3],
      [4, 4, 4, 4]]
 
B = [ [1, 1, 1, 1],
      [2, 2, 2, 2],
      [3, 3, 3, 3],
      [4, 4, 4, 4]]
                     
C = A[:][:] # To store result
     
subtract(A, B, C)
 
print("Result matrix is")
for i in range(N):
    for j in range(N):
        print(C[i][j], " ", end = '')
    print()
     
# This code is contributed
# by Anant Agarwal.


C#




// C# program for subtraction of matrices
using System;
 
class GFG
{
static int N = 4;
 
// This function subtracts B[][]
// from A[][], and stores
// the result in C[][]
public static void subtract(int[][] A,
                            int[][] B,
                            int[, ] C)
{
    int i, j;
    for (i = 0; i < N; i++)
    {
        for (j = 0; j < N; j++)
        {
            C[i, j] = A[i][j] - B[i][j];
        }
    }
}
 
 
// Driver code
public static void Main(string[] args)
{
    int[][] A = new int[][]
    {
        new int[] {1, 1, 1, 1},
        new int[] {2, 2, 2, 2},
        new int[] {3, 3, 3, 3},
        new int[] {4, 4, 4, 4}
    };
 
    int[][] B = new int[][]
    {
        new int[] {1, 1, 1, 1},
        new int[] {2, 2, 2, 2},
        new int[] {3, 3, 3, 3},
        new int[] {4, 4, 4, 4}
    };
 
    // To store result
 
    int[, ] C = new int[N, N];
 
    int i, j;
    subtract(A, B, C);
 
    Console.Write("Result matrix is \n");
    for (i = 0; i < N; i++)
    {
        for (j = 0; j < N; j++)
        {
            Console.Write(C[i, j] + " ");
        }
        Console.Write("\n");
    }
}
}
 
// This code is contributed by Shrikant13


PHP




<?php
// This function subtracts B[][]
// from A[][], and stores the
// result in C[][]
function subtract(&$A, &$B, &$C)
{
    $N = 4;
    for ($i = 0; $i < $N; $i++)
        for ($j = 0; $j < $N; $j++)
            $C[$i][$j] = $A[$i][$j] -
                         $B[$i][$j];
}
 
// Driver code
$N = 4;
$A = array(array(1, 1, 1, 1),
           array(2, 2, 2, 2),
           array(3, 3, 3, 3),
           array(4, 4, 4, 4));
 
$B = array(array(1, 1, 1, 1),
           array(2, 2, 2, 2),
           array(3, 3, 3, 3),
           array(4, 4, 4, 4));
 
subtract($A, $B, $C);
 
echo "Result matrix is \n";
for ($i = 0; $i < $N; $i++)
{
    for ($j = 0; $j < $N; $j++)
    {
        echo $C[$i][$j];
        echo " ";
    }
        echo "\n";
}
 
// This code is contributed
// by Shivi_Aggarwal
?>


Output: 

Result matrix is
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The program can be extended for rectangular matrices. The following post can be useful for extending this program. 
How to pass a 2D array as a parameter in C?
The time complexity of the above program is O(n2). 

The auxiliary space of the above program is O(n2).
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :