# Program for Spearman’s Rank Correlation

Prerequisite : Correlation Coefficinet

Given two arrays X[] and Y[]. Find Spearman’s Rank Correlation. In Spearman rank correlation instead of working with the data values themselves (as discussed in Correlation coefficient), it work with the ranks of these values. The observations are first ranked and then these ranks are used in correlation. The Algorithm for this correlation is as follows

Rank each observation in X and store it in Rank_X
Rank each observation in Y and store it in Rank_Y
Obtain Pearson Correlation Coefficient for Rank_X and Rank_Y


The formula used to calculate Pearson’s Correlation Coefficient (r or rho) of sets X and Y is as follows: Algorithm for calculating Pearson’s Coefficient of Sets X and Y

function correlationCoefficient(X, Y)
n = X.size
sigma_x = sigma_y = sigma_xy = 0
sigma_xsq = sigma_ysq = 0
for i in 0...N-1
sigma_x = sigma_x + X[i]
sigma_y = sigma_y + Y[i]
sigma_xy = sigma_xy + X[i] * Y[i]
sigma_xsq = sigma_xsq + X[i] * X[i]
sigma_ysq = sigma_ysq + Y[i] * Y[i]

num =( n * sigma_xy - sigma_x * sigma_y)
den = sqrt( [n*sigma_xsq - (sigma_x)^ 2]*[ n*sigma_ysq - (sigma_y) ^ 2] )
return num/den


While assigning ranks, it may encounter ties i.e two or more observations having the same rank. To resolve ties, this will use fractional ranking scheme. In this scheme, if n observations have the same rank then each observation gets a fractional rank given by:

fractional_rank = (rank) + (n-1)/2


The next rank that gets assigned is rank + n and not rank + 1. For instance, if the 3 items have same rank r, then each gets fractional_rank as given above. The next rank that can be given to another observation is r + 3. Note that fractional ranks need not be fractions. They are the arithmetic mean of n consecutive ranks ex r, r + 1, r + 2 … r + n-1.

(r + r+1 + r+2 + ... + r+n-1) / n = r + (n-1)/2


Some Examples :

Input :    X = [15 18 19 20 21]
Y = [25 26 28 27 29]
Solution : Rank_X = [1 2 3 4 5]
Rank_Y = [1 2 4 3 5 ]
sigma_x = 1+2+3+4+5 = 15
sigma_y = 1+2+4+3+5 = 15
sigma_xy = 1*2+2*2+3*4+4*3+5*5 = 54
sigma_xsq = 1*1+2*2+3*3+4*4+5*5 = 55
sigma_ysq = 1*1+2*2+3*3+4*4+5*5 = 55
Substitute values in formula
Coefficient = Pearson(Rank_X, Rank_Y) = 0.9

Input:    X = [15 18 21 15 21 ]
Y = [25 25 27 27 27 ]
Solution: Rank_X = [1.5  3 4.5 1.5 4.5]
Rank_Y = [1.5  1.5 4 4 4]
Calculate and substitute values of sigma_x, sigma_y,
sigma_xy, sigma_xsq, sigma_ysq.
Coefficient = Pearson(Rank_X, Rank_Y) = 0.456435


The Algorithm for fractional ranking scheme is given below

function rankify(X)
N = X.size()

// Vector to store ranks
Rank_X(N)
for i = 0 ... N-1
r = 1 and s = 1

// Count no of smaller elements in 0...i-1
for j = 0...i-1
if X[j] < X[i]
r = r+1
if X[j] == X[i]
s = s+1

// Count no of smaller elements in i+1...N-1
for j = i+1...N-1
if X[j] < X[i]
r = r+1
if X[j] == X[i]
s = s+1

//Assign Fractional Rank
Rank_X[i] = r + (s-1) * 0.5

return Rank_X


Note:
There is a direct formula to calculate Spearman’s coefficient given by However we need to put in a correction term to resolve each tie and hence this formula has not been discussed. Calculating Spearman’s coefficient from the correlation coefficient of ranks is the most general method.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A CPP Program to evaluate Spearman’s coefficient is given below

## C++

 // Program to find correlation  // coefficient  #include  #include  #include  using namespace std;     typedef vector<float> Vector;     // Utility Function to print  // a Vector  void printVector(const Vector &X)   {      for (auto i: X)           cout << i << " ";             cout << endl;  }     // Function returns the rank vector  // of the set of observations  Vector rankify(Vector & X) {         int N = X.size();         // Rank Vector      Vector Rank_X(N);             for(int i = 0; i < N; i++)       {          int r = 1, s = 1;                     // Count no of smaller elements          // in 0 to i-1          for(int j = 0; j < i; j++) {              if (X[j] < X[i] ) r++;              if (X[j] == X[i] ) s++;          }                 // Count no of smaller elements          // in i+1 to N-1          for (int j = i+1; j < N; j++) {              if (X[j] < X[i] ) r++;              if (X[j] == X[i] ) s++;          }             // Use Fractional Rank formula          // fractional_rank = r + (n-1)/2          Rank_X[i] = r + (s-1) * 0.5;              }             // Return Rank Vector      return Rank_X;  }     // function that returns  // Pearson correlation coefficient.  float correlationCoefficient          (Vector &X, Vector &Y)  {      int n = X.size();      float sum_X = 0, sum_Y = 0,                       sum_XY = 0;      float squareSum_X = 0,           squareSum_Y = 0;         for (int i = 0; i < n; i++)      {          // sum of elements of array X.          sum_X = sum_X + X[i];             // sum of elements of array Y.          sum_Y = sum_Y + Y[i];             // sum of X[i] * Y[i].          sum_XY = sum_XY + X[i] * Y[i];             // sum of square of array elements.          squareSum_X = squareSum_X +                         X[i] * X[i];          squareSum_Y = squareSum_Y +                         Y[i] * Y[i];      }         // use formula for calculating      // correlation coefficient.      float corr = (float)(n * sum_XY -                     sum_X * sum_Y) /                     sqrt((n * squareSum_X -                         sum_X * sum_X) *                          (n * squareSum_Y -                         sum_Y * sum_Y));         return corr;  }     // Driver function  int main()  {         Vector X = {15,18,21, 15, 21};      Vector Y= {25,25,27,27,27};         // Get ranks of vector X      Vector rank_x = rankify(X);         // Get ranks of vector y      Vector rank_y = rankify(Y);             cout << "Vector X" << endl;      printVector(X);         // Print rank vector of X       cout << "Rankings of X" << endl;      printVector(rank_x);             // Print Vector Y      cout << "Vector Y" << endl;      printVector(Y);         // Print rank vector of Y       cout << "Rankings of Y" << endl;      printVector(rank_y);         // Print Spearmans coefficient      cout << "Spearman's Rank correlation: "                                 << endl;      cout<

Output:

Vector X
15   18   21   15   21
Rankings of X
1.5   3   4.5   1.5   4.5
Vector Y
25   25   27   27   27
Rankings of Y
1.5   1.5   4   4   4
Spearman's Rank correlation:
0.456435


Python code to calculate Spearman’s Rank Correlation:

 # Import pandas and scipy.stats  import pandas as pd  import scipy.stats     # Two lists x and y  x = [15,18,21, 15, 21]  y = [25,25,27,27,27]     # Create a function that takes in x's and y's  def spearmans_rank_correlation(x, y):             # Calculate the rank of x's      xranks = pd.Series(x).rank()      print("Rankings of X:")      print(xranks)             # Caclulate the ranking of the y's      yranks = pd.Series(y).rank()      print("Rankings of Y:")      print(yranks)             # Calculate Pearson's correlation coefficient on the ranked versions of the data      print("Spearman's Rank correlation:",scipy.stats.pearsonr(xranks, yranks))     # Call the function  spearmans_rank_correlation(x, y)     # This code is contributed by Manish KC  # profile: mkumarchaudhary06 

Output:

Rankings of X:
0    1.5
1    3.0
2    4.5
3    1.5
4    4.5
dtype: float64
Rankings of Y:
0    1.5
1    1.5
2    4.0
3    4.0
4    4.0
dtype: float64
Spearman's Rank correlation: 0.456435464588


Python code to calculate Spearman’s Correlation using Scipy
There is one simple way to directly get the spearman’s correlation value using scipy.

 # Import scipy.stats  import scipy.stats     # Two lists x and y  x = [15,18,21, 15, 21]  y = [25,25,27,27,27]     print(scipy.stats.spearmanr(x, y))     # This code is contributed by Manish KC  # Profile: mkumarchaudhary06 

Output:

0.45643546458763845`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : mkumarchaudhary06

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.