Program for multiplication of array elements
We are given an array, and we have to calculate the product of an array using both iterative and recursive methods.
Examples:
Input : array[] = {1, 2, 3, 4, 5, 6}
Output : 720
Here, product of elements = 1*2*3*4*5*6 = 720Input : array[] = {1, 3, 5, 7, 9}
Output : 945
Iterative Method: We initialize result as 1. We traverse array from left to right and multiply elements with results.
Implementation:
C++
// Iterative C++ program to // multiply array elements #include<bits/stdc++.h> using namespace std; // Function to calculate the // product of the array int multiply( int array[], int n) { int pro = 1; for ( int i = 0; i < n; i++) pro = pro * array[i]; return pro; } // Driver Code int main() { int array[] = {1, 2, 3, 4, 5, 6}; int n = sizeof (array) / sizeof (array[0]); // Function call to calculate product cout << multiply(array, n); return 0; } |
Java
// Iterative Java program to // multiply array elements import java.io.*; public class GFG { static int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; // Method to calculate the // product of the array static int multiply() { int pro = 1 ; for ( int i = 0 ; i < arr.length; i++) pro = pro * arr[i]; return pro; } // Driver Code public static void main(String[] args) { // Method call to calculate product System.out.println(multiply()); } } |
Python3
# Iterative Python3 code to # multiply list elements # Function to calculate # the product of the array def multiply( array , n ): pro = 1 for i in range (n): pro = pro * array[i] return pro # Driver code array = [ 1 , 2 , 3 , 4 , 5 , 6 ] n = len (array) # Function call to # calculate product print (multiply(array, n)) # This code is contributed # by "Sharad_Bhardwaj". |
C#
// Iterative C# program to // multiply array elements using System; class GFG { static int []arr = {1, 2, 3, 4, 5, 6}; // Method to calculate the // product of the array static int multiply() { int pro = 1; for ( int i = 0; i < arr.Length; i++) pro = pro * arr[i]; return pro; } // Driver Code public static void Main() { // Method call to calculate product Console.Write(multiply()); } } // This code is contributed by nitin mittal |
PHP
<?php // Iterative PHP program to // multiply array elements // Function to calculate the // product of the array function multiply( $arr , $n ) { $pro = 1; for ( $i = 0; $i < $n ; $i ++) $pro = $pro * $arr [ $i ]; return $pro ; } // Driver Code $arr = array (1, 2, 3, 4, 5, 6); $n = sizeof( $arr ) / sizeof( $arr [0]); // Function call to // calculate product echo multiply( $arr , $n ); return 0; // This code is contributed by nitin mittal. ?> |
Javascript
<script> // Iterative javascript program to // multiply array elements var arr = [ 1, 2, 3, 4, 5, 6 ]; // Method to calculate the // product of the array function multiply() { var pro = 1; for (i = 0; i < arr.length; i++) pro = pro * arr[i]; return pro; } // Driver Code // Method call to calculate product document.write(multiply()); // This code contributed by aashish1995 </script> |
720
Time Complexity: O(n)
Auxiliary Space: O(1)
Recursive Method:
C++
// Recursive C++ program to // multiply array elements #include<iostream> using namespace std; // Function to calculate the // product of array using recursion int multiply( int a[], int n) { // Termination condition if (n == 0) return (a[n]); else return (a[n] * multiply(a, n - 1)); } // Driver Code int main() { int array[] = {1, 2, 3, 4, 5, 6}; int n = sizeof (array) / sizeof (array[0]); // Function call to // calculate the product cout << multiply(array, n - 1) << endl; return 0; } |
Java
// Recursive Java program to // multiply array elements import java.io.*; public class GFG { static int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; // Method to calculate the product // of the array using recursion static int multiply( int a[], int n) { // Termination condition if (n == 0 ) return (a[n]); else return (a[n] * multiply(a, n - 1 )); } // Driver Code public static void main(String[] args) { // Method call to // calculate product System.out.println(multiply(arr, arr.length - 1 )); } } |
Python3
# Recursive Python3 code # to multiply array elements # Function to calculate the product # of array using recursion def multiply( a , n ): # Termination condition if n = = 0 : return (a[n]) else : return (a[n] * multiply(a, n - 1 )) # Driver Code array = [ 1 , 2 , 3 , 4 , 5 , 6 ] n = len (array) # Function call to # calculate the product print (multiply(array, n - 1 )) # This code is contributed # by "Sharad_Bhardwaj". |
C#
// Recursive C# program to // multiply array elements using System; class GFG { static int []arr = {1, 2, 3, 4, 5, 6}; // Method to calculate the product // of the array using recursion static int multiply( int []a, int n) { // Termination condition if (n == 0) return (a[n]); else return (a[n] * multiply(a, n - 1)); } // Driver Code public static void Main() { // Method call to // calculate product Console.Write(multiply(arr, arr.Length - 1)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // Recursive PHP program to // multiply array elements // Function to calculate the // product of array using recursion function multiply( $a , $n ) { // Termination condition if ( $n == 0) return ( $a [ $n ]); else return ( $a [ $n ] * multiply( $a , $n - 1)); } // Driver Code $array = array (1, 2, 3, 4, 5, 6); $n = count ( $array ); // Function call to // calculate the product echo multiply( $array , $n - 1) // This code is contributed by anuj_67. ?> |
Javascript
<script> // Recursive javascript program to // multiply array elements var arr = [ 1, 2, 3, 4, 5, 6 ]; // Method to calculate the product // of the array using recursion function multiply(a , n) { // Termination condition if (n == 0) return (a[n]); else return (a[n] * multiply(a, n - 1)); } // Driver Code // Method call to // calculate product document.write(multiply(arr, arr.length - 1)); // This code is contributed by todaysgaurav </script> |
720
Time Complexity: O(n)
Auxiliary Space: O(n)
Using C++ STL:
C++
// C++ program for multiplication of array elements #include <iostream> /*In C++, we can quickly find array product using accumulate() and multiplies<>() defined in numeric library*/ #include <numeric> using namespace std; // Function to calculate the // product of the array int multiply( int array[], int n) { //The pro specifies the initial value to be considered int pro = 1; /* Here accumulate() take 4 parameters: begening of array, end of array, the initial value and the binary operation function object that will be applied */ return accumulate(array, array + n, pro, multiplies< int >()); } int main() { int array[] = {1, 2, 3, 4, 5, 6}; //get length of array int n = sizeof (array) / sizeof (array[0]); cout << multiply(array, n); return 0; //This code is contributed by Shivesh Kumar Dwivedi } |
Java
// Java program for multiplication of array elements import java.util.Arrays; public class Multiply { // Function to calculate the product of the array public int multiply( int array[], int n) { // The pro specifies the initial value to be considered int pro = 1 ; for ( int i = 0 ; i < n; i++) { pro *= array[i]; } return pro; } public static void main(String[] args) { int array[] = { 1 , 2 , 3 , 4 , 5 , 6 }; int n = array.length; Multiply obj = new Multiply(); System.out.println(obj.multiply(array, n)); } } // This code is contributed by factworx412 |
Python3
#python3 program for multiplication of array elements #In python3, we can quickly find array product using #reduce available in functools library from functools import reduce # Function to calculate the #product of the array def multiply(array, n): #The reduce() only takes the name of the array/list as a parameter return reduce (( lambda x, y: x * y), array) array = [ 1 , 2 , 3 , 4 , 5 , 6 ] #get length of array n = len (array) print (multiply(array, n)) #This code is contributed by Abhijeet Kumar(abhijeet19403) |
C#
// C# program for multiplication of array elements using System; // In C#, we can quickly find array //product using using the Aggregate // method from the System.Linq namespace using System.Linq; public class GFG { // Function to calculate the product of the array static int Multiply( int [] array, int n) { // The pro specifies the initial value to be considered int pro = 1; // here Aggregate method takes two arguments // an initial value (in this case, pro) and a // delegate function that defines how to // aggregate the values in the array return array.Aggregate(pro, (current, t) => current * t); } // Driver Code static public void Main( string [] args) { int [] array = { 1, 2, 3, 4, 5, 6 }; // get length of array int n = array.Length; Console.WriteLine(Multiply(array, n)); } } // This code is contributed by Prasad Kandekar(prasad264) |
720
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is contributed by Rishabh Jain. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...