Given slant height, height and radius of a frustum of a cone, we have to calculate the volume and surface area of the frustum of a cone.
Frustum of cone
In geometry, a frustum is the portion of a solid (normally a cone or pyramid) that lies between one or two parallel planes cutting it.
If we cut a right circular cone by a plane parallel to its base, the portion of the solid between this plane and the base is known as the frustum of a cone.
Given below is a right circular cone.

The right circular cone after being cut by a plane parallel to its base results in a frustum as follows:

which has a circular base at bottom of radius R
circular upper portion with radius r
height h
and slant height l
- Volume of frustum of cone:
Volume (V) = 1/3 * pi * h(r2 + R2 + r*R)
where
r = radius of smaller circle
R = radius of bigger circle (or radius of base of the cone)
h = height of the frustum
Curved Surface Area of frustum of cone:
Curved Surface Area (CSA) = pi * l(R + r)
where
r = radius of smaller circle
R = radius of bigger circle
l = slant height of the frustum
TotalSurface Area of frustum of cone:
Total Surface Area (TSA) = pi * l(R + r) + pi(R2 + r2)
where
r = radius of smaller circle
R = radius of bigger circle
l = slant height of frustum
Examples:
Input : Radius of smaller circle = 3
Radius of bigger circle = 8
Height of frustum = 12
Slant height of frustum = 13
Output :
Volume Of Frustum of Cone : 1218.937
Curved Surface Area Of Frustum of Cone : 449.24738
Total Surface Area Of Frustum of Cone : 678.58344
Input : Radius of smaller circle = 7
Radius of bigger circle = 10
Height of frustum = 4
Slant height of frustum = 5
Output :
Volume Of Frustum of Cone : 917.34436
Curved Surface Area Of Frustum of Cone : 267.03516
Total Surface Area Of Frustum of Cone : 735.1321
C++
#include <iostream>
using namespace std;
float pi = 3.14159;
float volume( float r, float R, float h)
{
return ( float (1) / float (3)) * pi * h *
(r * r + R * R + r * R);
}
float curved_surface_area( float r, float R, float l)
{
return pi * l * (R + r);
}
float total_surface_area( float r, float R, float l,
float h)
{
return pi * l * (R + r) + pi * (r * r + R * R);
}
int main()
{
float small_radius = 3;
float big_radius = 8;
float slant_height = 13;
float height = 12;
cout << "Volume Of Frustum of Cone : "
<< volume(small_radius, big_radius, height)
<< endl;
cout << "Curved Surface Area Of Frustum of Cone : "
<< curved_surface_area(small_radius, big_radius,
slant_height) << endl;
cout << "Total Surface Area Of Frustum of Cone : "
<< total_surface_area(small_radius, big_radius,
slant_height, height);
return 0;
}
|
Java
public class demo {
static float pi = 3 .14159f;
public static float volume( float r, float R, float h)
{
return ( float ) 1 / 3 * pi * h * (r * r + R * R +
r * R);
}
public static float curved_surface_area( float r,
float R, float l)
{
return pi * l * (R + r);
}
public static float total_surface_area( float r,
float R, float l, float h)
{
return pi * l * (R + r) + pi * (r * r + R * R);
}
public static void main(String args[])
{
float small_radius = 3 ;
float big_radius = 8 ;
float slant_height = 13 ;
float height = 12 ;
System.out.print( "Volume Of Frustum of Cone : " );
System.out.println(volume(small_radius,
big_radius, height));
System.out.print( "Curved Surface Area Of" +
" Frustum of Cone : " );
System.out.println(curved_surface_area(small_radius,
big_radius, slant_height));
System.out.print( "Total Surface Area Of" +
" Frustum of Cone : " );
System.out.println(total_surface_area(small_radius,
big_radius, slant_height, height));
}
}
|
Python3
import math
pi = math.pi
def volume( r , R , h ):
return 1 / 3 * pi * h * (r
* r + R * R + r * R)
def curved_surface_area( r , R , l ):
return pi * l * (R + r)
def total_surface_area( r , R , l , h ):
return pi * l * (R + r) + pi * (r
* r + R * R)
small_radius = 3
big_radius = 8
slant_height = 13
height = 12
print ( "Volume Of Frustum of Cone : "
,end = '')
print (volume(small_radius, big_radius,
height))
print ( "Curved Surface Area Of Frustum" +
" of Cone : " ,end = '')
print (curved_surface_area(small_radius,
big_radius,slant_height))
print ( "Total Surface Area Of Frustum" +
" of Cone : " ,end = '')
print (total_surface_area(small_radius,
big_radius,slant_height, height))
|
C#
using System;
public class demo {
static float pi = 3.14159f;
public static float volume( float r, float R, float h)
{
return ( float )1 / 3 * pi * h * (r * r + R *
R + r * R);
}
public static float curved_surface_area( float r,
float R, float l)
{
return pi * l * (R + r);
}
public static float total_surface_area( float r, float R,
float l, float h)
{
return pi * l * (R + r) + pi *
(r * r + R * R);
}
public static void Main()
{
float small_radius = 3;
float big_radius = 8;
float slant_height = 13;
float height = 12;
Console.Write( "Volume Of Frustum of Cone : " );
Console.WriteLine(volume(small_radius,
big_radius, height));
Console.Write( "Curved Surface Area Of" +
" Frustum of Cone : " );
Console.WriteLine(curved_surface_area(small_radius,
big_radius, slant_height));
Console.Write( "Total Surface Area Of" +
" Frustum of Cone : " );
Console.WriteLine(total_surface_area(small_radius,
big_radius, slant_height, height));
}
}
|
PHP
<?php
function volume( $r , $R , $h )
{
$pi = 3.14159;
return (1 / (3)) * $pi * $h *
( $r * $r + $R * $R + $r * $R );
}
function curved_surface_area( $r , $R , $l )
{
$pi = 3.14159;
return $pi * $l * ( $R + $r );
}
function total_surface_area( $r , $R , $l , $h )
{
$pi = 3.14159;
return ( $pi * $l * ( $R + $r ) +
$pi * ( $r * $r + $R * $R ));
}
$small_radius = 3;
$big_radius = 8;
$slant_height = 13;
$height = 12;
echo ( "Volume Of Frustum of Cone : " );
echo (volume( $small_radius ,
$big_radius ,
$height ));
echo ( "\n" );
echo ( "Curved Surface Area Of Frustum of Cone : " );
echo (curved_surface_area( $small_radius ,
$big_radius ,
$slant_height ));
echo ( "\n" );
echo ( "Total Surface Area Of Frustum of Cone : " );
echo (total_surface_area( $small_radius ,
$big_radius ,
$slant_height ,
$height ));
?>
|
Output:
Volume Of Frustum of Cone : 1218.937
Curved Surface Area Of Frustum of Cone : 449.24738
Total Surface Area Of Frustum of Cone : 678.58344
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
20 Feb, 2023
Like Article
Save Article