# Program for product of array

• Difficulty Level : Easy
• Last Updated : 12 Aug, 2022

Given an array, find a product of all array elements.

Examples :

```Input  : ar[] = {1, 2, 3, 4, 5}
Output : 120
Product of array elements is 1 x 2
x 3 x 4 x 5 = 120.

Input  : ar[] = {1, 6, 3}
Output : 18```

Implementation:

## C++

 `// C++ program to find product of array elements.` `#include ``using` `namespace` `std;` `int` `product(``int` `ar[], ``int` `n)``{``    ``int` `result = 1;``    ``for` `(``int` `i = 0; i < n; i++)``        ``result = result * ar[i];``    ``return` `result;``}` `int` `main()``{` `    ``int` `ar[] = { 1, 2, 3, 4, 5 };``    ``int` `n = ``sizeof``(ar) / ``sizeof``(ar);``    ``cout << product(ar, n);``    ``return` `0;``}` `// This code is contributed by lokeshmvs21.`

## C

 `// C program to find product of array``// elements.``#include ` `int` `product(``int` `ar[], ``int` `n)``{``    ``int` `result = 1;``    ``for` `(``int` `i = 0; i < n; i++)``        ``result = result * ar[i];``    ``return` `result;``}` `// driver code for the above program``int` `main()``{``    ``int` `ar[] = { 1, 2, 3, 4, 5 };``    ``int` `n = ``sizeof``(ar) / ``sizeof``(ar);``    ``printf``(``"%d"``, product(ar, n));``    ``return` `0;``}`

## Java

 `// Java program to find product of array``// elements.``class` `GFG{` `    ``static` `int` `product(``int` `ar[], ``int` `n)``    ``{``        ``int` `result = ``1``;``        ``for` `(``int` `i = ``0``; i < n; i++)``            ``result = result * ar[i];``        ``return` `result;``    ``}``     ` `    ``// driver code for the above program``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `ar[] = { ``1``, ``2``, ``3``, ``4``, ``5` `};``        ``int` `n = ar.length;``        ``System.out.printf(``"%d"``, product(ar, n));``    ``}``}` `// This code is contributed by Smitha Dinesh Semwal`

## Python3

 `# Python3 program to find``# product of array elements.``def` `product(ar, n):` `    ``result ``=` `1``    ``for` `i ``in` `range``(``0``, n):``        ``result ``=` `result ``*` `ar[i]``    ``return` `result`  `# Driver Code``ar ``=` `[ ``1``, ``2``, ``3``, ``4``, ``5` `]``n ``=` `len``(ar)` `print``(product(ar, n))` `# This code is contributed by Smitha Dinesh Semwal.`

## C#

 `// C# program to find product of array``// elements.``using` `System;` `class` `GFG {` `    ``static` `int` `product(``int` `[]ar, ``int` `n)``    ``{``        ``int` `result = 1;``        ` `        ``for` `(``int` `i = 0; i < n; i++)``            ``result = result * ar[i];``            ` `        ``return` `result;``    ``}``    ` `    ``// driver code for the above program``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]ar = { 1, 2, 3, 4, 5 };``        ``int` `n = ar.Length;``        ` `        ``Console.WriteLine(product(ar, n));``    ``}``}` `// This code is contributed by vt_m.`

## PHP

 ``

## Javascript

 ``

Output

`120`

Time Complexity : O(n)
Auxiliary Space : O(1)

The above code may cause overflow. Therefore, it is always desired to compute product under modulo. The reason for its working is the simple distributive property of modulo.

`( a * b) % c = ( ( a % c ) * ( b % c ) ) % c`

Below is a program to find and print the product of all the number in this array of Modulo (10^9 +7)

Implementation:

## C++

 `// C++ code for above program to find product``// under modulo.` `#include ``using` `namespace` `std;` `const` `int` `MOD = 1000000007;` `int` `product(``int` `ar[], ``int` `n)``{``    ``int` `result = 1;``    ``for` `(``int` `i = 0; i < n; i++)``        ``result = (result * ar[i]) % MOD;``    ``return` `result;``}` `int` `main()``{` `    ``int` `ar[] = { 1, 2, 3, 4, 5 };``    ``int` `n = ``sizeof``(ar) / ``sizeof``(ar);``    ``cout << product(ar, n);``    ``return` `0;``}` `// This code is contributed by lokeshmvs21.`

## C

 `// C code for above program to find product``// under modulo.``#include ` `const` `int` `MOD = 1000000007;` `int` `product(``int` `ar[], ``int` `n)``{``    ``int` `result = 1;``    ``for` `(``int` `i = 0; i < n; i++)``        ``result = (result * ar[i]) % MOD;``    ``return` `result;``}` `// driver code for the above program``int` `main()``{``    ``int` `ar[] = { 1, 2, 3, 4, 5 };``    ``int` `n = ``sizeof``(ar) / ``sizeof``(ar);``    ``printf``(``"%d"``, product(ar, n));``    ``return` `0;``}`

## Java

 `// Java code for above program to find product``// under modulo.``class` `GFG {``    ` `    ``static` `final` `int` `MOD = ``1000000007``;` `    ``static` `int` `product(``int` `ar[], ``int` `n)``    ``{``        ``int` `result = ``1``;``        ``for` `(``int` `i = ``0``; i < n; i++)``            ``result = (result * ar[i]) % MOD;``            ` `        ``return` `result;``    ``}` `    ``// driver code for the above program``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `ar[] = { ``1``, ``2``, ``3``, ``4``, ``5` `};``        ``int` `n = ar.length;``        ` `        ``System.out.printf(``"%d"``, product(ar, n));``    ``}``}` `// This code is contributed by  Smitha Dinesh Semwal.`

## Python3

 `# Python 3 code for above``# program to find product``# under modulo.` `MOD ``=` `1000000007` `def` `product(ar, n):` `    ``result ``=` `1``    ``for` `i ``in` `range``(``0``, n):``        ``result ``=` `(result ``*` `ar[i]) ``%` `MOD``    ``return` `result`  `# driver code for the``# above program``ar ``=` `[``1``, ``2``, ``3``, ``4``, ``5``]``n ``=` `len``(ar)` `print``(product(ar, n))` `# This code is contributed by``# Smitha Dinesh Semwal`

## C#

 `  ``// C# code for above program to find product``// under modulo.``using` `System;``class` `GFG {``    ` `    ``static`  `int` `MOD = 1000000007;` `    ``static` `int` `product(``int` `[]ar, ``int` `n)``    ``{``        ``int` `result = 1;``        ``for` `(``int` `i = 0; i < n; i++)``            ``result = (result * ar[i]) % MOD;``            ` `        ``return` `result;``    ``}` `    ``// driver code for the above program``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]ar = { 1, 2, 3, 4, 5 };``        ``int` `n = ar.Length;``        ` `        ``Console.WriteLine(product(ar, n));``    ``}``}` `// This code is contributed by vt_m.`

## PHP

 ``

## Javascript

 ``

Output

`120`

Time Complexity : O(n)
Auxiliary Space : O(1)

This article is contributed by Shivani Baghel. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up