Skip to content
Related Articles

Related Articles

Program for product of array

View Discussion
Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 12 Aug, 2022
View Discussion
Improve Article
Save Article

Given an array, find a product of all array elements.

Examples : 

Input  : ar[] = {1, 2, 3, 4, 5}
Output : 120
Product of array elements is 1 x 2
x 3 x 4 x 5 = 120.

Input  : ar[] = {1, 6, 3}
Output : 18

Implementation:

C++




// C++ program to find product of array elements.
 
#include <iostream>
using namespace std;
 
int product(int ar[], int n)
{
    int result = 1;
    for (int i = 0; i < n; i++)
        result = result * ar[i];
    return result;
}
 
int main()
{
 
    int ar[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(ar) / sizeof(ar[0]);
    cout << product(ar, n);
    return 0;
}
 
// This code is contributed by lokeshmvs21.

C




// C program to find product of array
// elements.
#include <stdio.h>
 
int product(int ar[], int n)
{
    int result = 1;
    for (int i = 0; i < n; i++)
        result = result * ar[i];
    return result;
}
 
// driver code for the above program
int main()
{
    int ar[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(ar) / sizeof(ar[0]);
    printf("%d", product(ar, n));
    return 0;
}

Java




// Java program to find product of array
// elements.
class GFG{
 
    static int product(int ar[], int n)
    {
        int result = 1;
        for (int i = 0; i < n; i++)
            result = result * ar[i];
        return result;
    }
      
    // driver code for the above program
    public static void main(String[] args)
    {
        int ar[] = { 1, 2, 3, 4, 5 };
        int n = ar.length;
        System.out.printf("%d", product(ar, n));
    }
}
 
// This code is contributed by Smitha Dinesh Semwal

Python3




# Python3 program to find
# product of array elements.
def product(ar, n):
 
    result = 1
    for i in range(0, n):
        result = result * ar[i]
    return result
 
 
# Driver Code
ar = [ 1, 2, 3, 4, 5 ]
n = len(ar)
 
print(product(ar, n))
 
# This code is contributed by Smitha Dinesh Semwal.

C#




// C# program to find product of array
// elements.
using System;
 
class GFG {
 
    static int product(int []ar, int n)
    {
        int result = 1;
         
        for (int i = 0; i < n; i++)
            result = result * ar[i];
             
        return result;
    }
     
    // driver code for the above program
    public static void Main()
    {
        int []ar = { 1, 2, 3, 4, 5 };
        int n = ar.Length;
         
        Console.WriteLine(product(ar, n));
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP program to find product
// of array elements.
 
function product($ar, $n)
{
    $result = 1;
    for ($i = 0; $i < $n; $i++)
        $result = $result * $ar[$i];
    return $result;
}
 
// Driver Code
$ar = array( 1, 2, 3, 4, 5 );
$n = count($ar);
print((int)product($ar, $n));
 
// This code is contributed by Sam007
?>

Javascript




<script>
 
// Javascript program to find product of array
// elements.
function product(ar,n)
    {
        let result = 1;
        for (let i = 0; i < n; i++)
            result = result * ar[i];
        return result;
    }
     
    // driver code for the above program
        let ar = [ 1, 2, 3, 4, 5 ];
        let n = ar.length;
        document.write(parseInt(product(ar, n)));       
     
    // This code is Contributed by sravan kumar
     
</script>

Output

120

Time Complexity : O(n)
Auxiliary Space : O(1) 

The above code may cause overflow. Therefore, it is always desired to compute product under modulo. The reason for its working is the simple distributive property of modulo. 

( a * b) % c = ( ( a % c ) * ( b % c ) ) % c

Below is a program to find and print the product of all the number in this array of Modulo (10^9 +7)

Implementation:

C++




// C++ code for above program to find product
// under modulo.
 
#include <iostream>
using namespace std;
 
const int MOD = 1000000007;
 
int product(int ar[], int n)
{
    int result = 1;
    for (int i = 0; i < n; i++)
        result = (result * ar[i]) % MOD;
    return result;
}
 
int main()
{
 
    int ar[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(ar) / sizeof(ar[0]);
    cout << product(ar, n);
    return 0;
}
 
// This code is contributed by lokeshmvs21.

C




// C code for above program to find product
// under modulo.
#include <stdio.h>
 
const int MOD = 1000000007;
 
int product(int ar[], int n)
{
    int result = 1;
    for (int i = 0; i < n; i++)
        result = (result * ar[i]) % MOD;
    return result;
}
 
// driver code for the above program
int main()
{
    int ar[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(ar) / sizeof(ar[0]);
    printf("%d", product(ar, n));
    return 0;
}

Java




// Java code for above program to find product
// under modulo.
class GFG {
     
    static final int MOD = 1000000007;
 
    static int product(int ar[], int n)
    {
        int result = 1;
        for (int i = 0; i < n; i++)
            result = (result * ar[i]) % MOD;
             
        return result;
    }
 
    // driver code for the above program
    public static void main(String[] args)
    {
        int ar[] = { 1, 2, 3, 4, 5 };
        int n = ar.length;
         
        System.out.printf("%d", product(ar, n));
    }
}
 
// This code is contributed by  Smitha Dinesh Semwal.

Python3




# Python 3 code for above
# program to find product
# under modulo.
 
MOD = 1000000007
 
def product(ar, n):
 
    result = 1
    for i in range(0, n):
        result = (result * ar[i]) % MOD
    return result
 
 
# driver code for the
# above program
ar = [1, 2, 3, 4, 5]
n = len(ar)
 
print(product(ar, n))
 
# This code is contributed by
# Smitha Dinesh Semwal

C#




  // C# code for above program to find product
// under modulo.
using System;
class GFG {
     
    static  int MOD = 1000000007;
 
    static int product(int []ar, int n)
    {
        int result = 1;
        for (int i = 0; i < n; i++)
            result = (result * ar[i]) % MOD;
             
        return result;
    }
 
    // driver code for the above program
    public static void Main()
    {
        int []ar = { 1, 2, 3, 4, 5 };
        int n = ar.Length;
         
        Console.WriteLine(product(ar, n));
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP code for above program
// to find product under modulo.
 
function product($ar, $n)
{
    $result = 1;
    for ($i = 0; $i < $n; $i++)
        $result = ($result *
                   $ar[$i]) % 1000000007;
    return $result;
}
 
// Driver Code
$ar = array( 1, 2, 3, 4, 5 );
$n = count($ar);
print(product($ar, $n));
 
// This code is contributed by Sam007
?>

Javascript




<script>
    // Javascript code for above program to find product under modulo.
     
    let MOD = 1000000007;
  
    function product(ar, n)
    {
        let result = 1;
        for (let i = 0; i < n; i++)
            result = (result * ar[i]) % MOD;
              
        return result;
    }
     
    let ar = [ 1, 2, 3, 4, 5 ];
    let n = ar.length;
 
    document.write(product(ar, n));
     
     
</script>

Output

120

Time Complexity : O(n)
Auxiliary Space : O(1) 

This article is contributed by Shivani Baghel. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!