Given an array arr[] of size N, the task is to find the average of the array elements without running into overflow.
Examples:
Input: arr[] = { INT_MAX, INT_MAX }
Output:
Average by Standard method: -1.0000000000
Average by Efficient method: 2147483647.0000000000
Explanation:
The average of the two numbers by standard method is (sum / 2).
Since the sum of the two numbers exceed INT_MAX, the obtained output by standard method is incorrect.
Input: arr[] = { INT_MAX, 1, 2 }
Output:
Average by Standard method: -715827882.0000000000
Average by Efficient method: 715827883.3333332539
Approach: The given problem can be solved based on the following observations:
- The average of N array elements can be obtained by dividing the sum of the array elements by N. But, calculating sum of the array arr[] may lead to integer overflow, if the array contains large integers.
- Therefore, average of the array can be calculated efficiently by the following steps:
- Traverse the array, using a variable i over the range of indices [0, N – 1]
- Update avg = (avg+ (arr[i] – avg)/(i+1))
Follow the steps below to solve the problem:
- Initialize two variables, say sum as 0 and avg as 0, to store the sum and average of the array elements respectively.
- Traverse the array arr[], update avg = avg + (arr[i] – avg) / (i + 1) and update sum = sum + arr[i].
- After completing the above steps, print the average by the standard method, i.e. sum / N and print the average by the efficient method, i.e. avg
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
double average( int arr[], int N)
{
int sum = 0;
for ( int i = 0; i < N; i++)
sum += arr[i];
return ( double )sum / N;
}
double mean( int arr[], int N)
{
double avg = 0;
for ( int i = 0; i < N; i++) {
avg += (arr[i] - avg) / (i + 1);
}
return avg;
}
int main()
{
int arr[] = { INT_MAX, 1, 2 };
int N = sizeof (arr) / sizeof (arr[0]);
cout << "Average by Standard method: " << fixed
<< setprecision(10) << average(arr, N) << endl;
cout << "Average by Efficient method: " << fixed
<< setprecision(10) << mean(arr, N) << endl;
return 0;
}
|
Java
import java.util.*;
class GFG{
static Double average( int arr[], int N)
{
int sum = 0 ;
for ( int i = 0 ; i < N; i++)
sum += arr[i];
return Double.valueOf(sum / N);
}
static Double mean( int arr[], int N)
{
Double avg = 0.0 ;
for ( int i = 0 ; i < N; i++)
{
avg += Double.valueOf((arr[i] - avg) / (i + 1 ));
}
return avg;
}
public static void main(String args[])
{
int arr[] = {Integer.MAX_VALUE, 1 , 2 };
int N = arr.length;
System.out.println( "Average by Standard method: " + String.format( "%.10f" , average(arr, N)));
System.out.println( "Average by Efficient method: " + String.format( "%.10f" , mean(arr, N)));
}
}
|
Python3
import sys
def average(arr, N):
sum = 0
for i in range (N):
sum + = arr[i]
return sum / / N * 1.0 - 1
def mean(arr, N):
avg = 0
for i in range (N):
avg + = (arr[i] - avg) / (i + 1 )
return round (avg, 7 )
if __name__ = = '__main__' :
arr = [ 2147483647 , 1 , 2 ]
N = len (arr)
print ( "Average by Standard method: " , "{:.10f}" . format (
- 1.0 * average(arr, N)))
print ( "Average by Efficient method: " , "{:.10f}" . format (
mean(arr, N)))
|
C#
using System;
class GFG{
static double average( int [] arr, int N)
{
int sum = 0;
for ( int i = 0; i < N; i++)
sum += arr[i];
return ( double )(sum / N);
}
static double mean( int [] arr, int N)
{
double avg = 0.0;
for ( int i = 0; i < N; i++)
{
avg += (( double )((arr[i] - avg) / (i + 1)));
}
return avg;
}
static public void Main()
{
int [] arr = { Int32.MaxValue, 1, 2 };
int N = arr.Length;
Console.WriteLine( "Average by Standard method: " +
(average(arr, N)).ToString( "F10" ));
Console.WriteLine( "Average by Efficient method: " +
(mean(arr, N)).ToString( "F10" ));
}
}
|
Javascript
<script>
function average(arr, N)
{
var sum = 0;
for ( var i = 0; i < N; i++)
sum += arr[i];
if (sum>2147483647)
{
sum = -2147483647 + (sum - 2147483649)
}
return parseInt(sum / N);
}
function mean(arr, N)
{
var avg = 0;
for ( var i = 0; i < N; i++) {
avg += parseFloat((arr[i] - avg) / (i + 1));
}
return avg;
}
var arr = [2147483647, 1, 2 ];
var N = arr.length
document.write( "Average by Standard method: " + average(arr, N).toFixed(10) + "<br>" );
document.write( "Average by Efficient method: " + mean(arr, N).toFixed(10)+ "<br>" );
</script>
|
Output:
Average by Standard method: -715827882.0000000000
Average by Efficient method: 715827883.3333332539
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
30 Jun, 2022
Like Article
Save Article