Given a number n, find the sum of first natural numbers.
Examples :
Input : n = 3 Output : 6 Explanation : Note that 1 + 2 + 3 = 6 Input : 5 Output : 15 Explanation : Note that 1 + 2 + 3 + 4 + 5 = 15
A simple solution is to do following.
1) Initialize : sum = 0 2) Run a loop from x = 1 to n and do following in loop. sum = sum + x
// CPP program to find sum of first // n natural numbers. #include<iostream> using namespace std;
// Returns sum of first n natural // numbers int findSum( int n)
{ int sum = 0;
for ( int x=1; x<=n; x++)
sum = sum + x;
return sum;
} // Driver code int main()
{ int n = 5;
cout << findSum(n);
return 0;
} |
// JAVA program to find sum of first // n natural numbers. import java.io.*;
class GFG{
// Returns sum of first n natural
// numbers
static int findSum( int n)
{
int sum = 0 ;
for ( int x = 1 ; x <= n; x++)
sum = sum + x;
return sum;
}
// Driver code
public static void main(String args[])
{
int n = 5 ;
System.out.println(findSum(n));
}
} // This code is contributed by Nikita Tiwari. |
# PYTHON program to find sum of first # n natural numbers. # Returns sum of first n natural # numbers def findSum(n) :
sum = 0
x = 1
while x < = n :
sum = sum + x
x = x + 1
return sum
# Driver code n = 5
print findSum(n)
# This code is contributed by Nikita Tiwari. |
// C# program to find sum of first // n natural numbers. using System;
class GFG{
// Returns sum of first n natural
// numbers
static int findSum( int n)
{
int sum = 0;
for ( int x = 1; x <= n; x++)
sum = sum + x;
return sum;
}
// Driver code
public static void Main()
{
int n = 5;
Console.Write(findSum(n));
}
} // This code is contributed by vt_m. |
<?php // PHP program to find sum of first // n natural numbers. // Returns sum of first n natural // numbers function findSum( $n )
{ $sum = 0;
for ( $x = 1; $x <= $n ; $x ++)
$sum = $sum + $x ;
return $sum ;
} // Driver code $n = 5;
echo findSum( $n );
// This code is contributed by Sam007 ?> |
Output :
15
An efficient solution is to use below formula.
How does this work?
We can prove this formula using induction. It is true for n = 1 and n = 2 For n = 1, sum = 1 * (1 + 1)/2 = 1 For n = 2, sum = 2 * (2 + 1)/2 = 3 Let it be true for k = n-1. Sum of k numbers = (k * (k+1))/2 Putting k = n-1, we get Sum of k numbers = ((n-1) * (n-1+1))/2 = (n - 1) * n / 2 If we add n, we get, Sum of n numbers = n + (n - 1) * n / 2 = (2n + n2 - n)/2 = n * (n + 1)/2
// Efficient CPP program to find sum of first // n natural numbers. #include<iostream> using namespace std;
// Returns sum of first n natural // numbers int findSum( int n)
{ return n * (n + 1) / 2;
} // Driver code int main()
{ int n = 5;
cout << findSum(n);
return 0;
} |
// Efficient JAVA program to find sum // of first n natural numbers. import java.io.*;
class GFG{
// Returns sum of first n natural
// numbers
static int findSum( int n)
{
return n * (n + 1 ) / 2 ;
}
// Driver code
public static void main(String args[])
{
int n = 5 ;
System.out.println(findSum(n));
}
} // This code is contributed by Nikita Tiwari. |
# Efficient CPP program to find sum # of first n natural numbers. # Returns sum of first n natural # numbers def findSum(n) :
return n * (n + 1 ) / 2
# Driver code n = 5
print findSum(n)
# This code is contributed by Nikita Tiwari. |
// Efficient C# program to find sum // of first n natural numbers. using System;
class GFG{
// Returns sum of first n natural
// numbers
static int findSum( int n)
{
return n * (n + 1) / 2;
}
// Driver code
public static void Main()
{
int n = 5;
Console.Write(findSum(n));
}
} // This code is contributed by vt_m. |
<?php // Efficient PHP program to find sum // of first n natural numbers. // Returns sum of first n natural // numbers function findSum( $n )
{ return ( $n * ( $n + 1) / 2);
} // Driver code $n = 5;
echo findSum( $n );
// This code is contributed by Sam007 ?> |
Output:
15
The above program causes overflow, even if the result is not beyond integer limit. We can avoid overflow up to some extent by doing division first.
// Efficient CPP program to find sum of first // n natural numbers that avoids overflow if // result is going to be within limits. #include<iostream> using namespace std;
// Returns sum of first n natural // numbers int findSum( int n)
{ if (n % 2 == 0)
return (n/2) * (n+1);
// If n is odd, (n+1) must be even
else return ((n + 1) / 2) * n;
} // Driver code int main()
{ int n = 5;
cout << findSum(n);
return 0;
} |
// Efficient JAVA program to find sum of first // n natural numbers that avoids overflow if // result is going to be within limits. import java.io.*;
class GFG{
// Returns sum of first n natural
// numbers
static int findSum( int n)
{
if (n % 2 == 0 )
return (n / 2 ) * (n + 1 );
// If n is odd, (n+1) must be even
else
return ((n + 1 ) / 2 ) * n;
}
// Driver code
public static void main(String args[])
{
int n = 5 ;
System.out.println(findSum(n));
}
} //This code is contributed by Nikita Tiwari. |
# Efficient Python program to find the sum # of first n natural numbers that avoid # overflow if the result is going to be # within limits. # Returns sum of first n natural # numbers def findSum(n) :
if (n % 2 = = 0 ) :
return (n / 2 ) * (n + 1 )
# If n is odd, (n+1) must be even
else :
return ((n + 1 ) / 2 ) * n
# Driver code n = 5
print findSum(n)
# This code is contributed by Nikita Tiwari. |
// Efficient C# program to find the sum of first // n natural numbers that avoid overflow if // result is going to be within limits. using System;
class GFG{
// Returns sum of first n natural
// numbers
static int findSum( int n)
{
if (n % 2 == 0)
return (n / 2) * (n + 1);
// If n is odd, (n+1) must be even
else
return ((n + 1) / 2) * n;
}
// Driver code
public static void Main()
{
int n = 5;
Console.Write(findSum(n));
}
} // This code is contributed by vt_m. |
<?php // Efficient php program to find sum of first // n natural numbers that avoids overflow if // result is going to be within limits. // Returns sum of first n natural // numbers function findSum( $n )
{ if ( $n % 2 == 0)
return ( $n / 2) *
( $n + 1);
// If n is odd, (n+1) must be even
else
return (( $n + 1) / 2) * $n ;
} // Driver code $n = 5;
echo findSum( $n );
// This code is contributed by Sam007 ?> |
Output:
15
This article is contributed by Karik. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.