Skip to content
Related Articles

Related Articles

Improve Article
Program to find smallest difference of angles of two parts of a given circle
  • Last Updated : 22 Apr, 2021

Given a division of a circle into n pieces as an array of size n. The ith element of the array denotes the angle of one piece. Our task is to make two continuous parts from these pieces so that the difference between angles of these two parts is minimum.
Examples : 
 

Input : arr[] = {90, 90, 90, 90}
Output : 0
In this example, we can take 1 and 2 
pieces and 3 and 4 pieces. Then the 
answer is |(90 + 90) - (90 + 90)| = 0.

Input : arr[] = {170, 30, 150, 10}
Output : 0
In this example, we can take 1 and 4, 
and 2 and 3 pieces. So the answer is 
|(170 + 10) - (30 + 150)| = 0.

Input : arr[] = {100, 100, 160}
Output : 40

 

We can notice that if one of the parts is continuous then all the remaining pieces also form a continuous part. If angle of the first part is equal to x then difference between angles of first and second parts is |x – (360 – x)| = |2 * x – 360| = 2 * |x – 180|. So for each possible continuous part, we can count its angle and update the answer. 
 

C++




// CPP program to find minimum
// difference of angles of two
// parts of given circle.
#include <bits/stdc++.h>
using namespace std;
 
// Returns the minimum difference
// of angles.
int findMinimumAngle(int arr[], int n)
{
    int l = 0, sum = 0, ans = 360;
    for (int i = 0; i < n; i++) {
        // sum of array
        sum += arr[i];
 
        while (sum >= 180) {
 
            // calculating the difference of
            // angles and take minimum of
            // previous and newly calculated
            ans = min(ans, 2 * abs(180 - sum));
            sum -= arr[l];
            l++;
        }
 
        ans = min(ans, 2 * abs(180 - sum));
    }
    return ans;
}
 
// driver code
int main()
{
    int arr[] = { 100, 100, 160 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << findMinimumAngle(arr, n) << endl;
    return 0;
}
 
// This code is contributed by "Abhishek Sharma 44"

Java




// java program to find minimum
// difference of angles of two
// parts of given circle.
import java.util.*;
 
class Count{
    public static int findMinimumAngle(int arr[], int n)
    {
        int l = 0, sum = 0, ans = 360;
        for (int i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
     
            while (sum >= 180)
            {
     
                // calculating the difference of
                // angles and take minimum of
                // previous and newly calculated
                ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
                sum -= arr[l];
                l++;
            }
     
            ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
        }
         
        return ans;
         
    }
     
    public static void main(String[] args)
    {
        int arr[] = { 100, 100, 160 };
        int n = 3;
        System.out.print(findMinimumAngle(arr, n));
    }
}
 
// This code is contributed by rishabh_jain

Python3




# java program to find minimum
# difference of angles of two
# parts of given circle.
import math
 
# function returns the minimum
# difference of angles.
def findMinimumAngle (arr, n):
    l = 0
    _sum = 0
    ans = 360
    for i in range(n):
         
        #sum of array
        _sum += arr[i]
         
        while _sum >= 180:
         
            # calculating the difference of
            # angles and take minimum of
            # previous and newly calculated
            ans = min(ans, 2 * abs(180 - _sum))
            _sum -= arr[l]
            l+=1
        ans = min(ans, 2 * abs(180 - _sum))
    return ans
     
# driver code
arr = [100, 100, 160]
n = len(arr)
print(findMinimumAngle (arr, n))
 
# This code is contributed by "Abhishek Sharma 44"

C#




// C# program to find minimum
// difference of angles of two
// parts of given circle.
using System;
 
class GFG
{
    public static int findMinimumAngle(int []arr, int n)
    {
        int l = 0, sum = 0, ans = 360;
        for (int i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
     
            while (sum >= 180)
            {
     
                // calculating the difference of
                // angles and take minimum of
                // previous and newly calculated
                ans = Math.Min(ans,
                      2 * Math.Abs(180 - sum));
                sum -= arr[l];
                l++;
            }
     
            ans = Math.Min(ans,
                        2 * Math.Abs(180 - sum));
        }
         
        return ans;
         
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 100, 100, 160 };
        int n = 3;
        Console.WriteLine(findMinimumAngle(arr, n));
    }
}
 
// This code is contributed by vt_m

PHP




<?php
// PHP program to find minimum
// difference of angles of two
// parts of given circle.
 
// Returns the minimum difference
// of angles.
function findMinimumAngle($arr, $n)
{
    $l = 0; $sum = 0; $ans = 360;
    for ($i = 0; $i < $n; $i++)
    {
        // sum of array
        $sum += $arr[$i];
 
        while ($sum >= 180)
        {
 
            // calculating the difference of
            // angles and take minimum of
            // previous and newly calculated
            $ans = min($ans, 2 *
                             abs(180 - $sum));
            $sum -= $arr[$l];
            $l++;
        }
 
        $ans = min($ans, 2 * abs(180 - $sum));
    }
    return $ans;
}
 
// Driver Code
$arr = array( 100, 100, 160 );
$n = sizeof($arr);
echo findMinimumAngle($arr, $n), "\n" ;
 
// This code is contributed by m_kit
?>

Javascript




<script>
// javascript program to find minimum
// difference of angles of two
// parts of given circle.
  
let MAXN = 109;
   
    function findMinimumAngle(arr, n)
    {
        let l = 0, sum = 0, ans = 360;
        for (let i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
       
            while (sum >= 180)
            {
       
                // calculating the difference of
                // angles and take minimum of
                // previous and newly calculated
                ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
                sum -= arr[l];
                l++;
            }
       
            ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
        }
           
        return ans;
           
    }
     
// Driver code
 
        let arr = [ 100, 100, 160 ];
        let n = 3;
        document.write(findMinimumAngle(arr, n));
 
</script>

Output : 
 

40

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :