# Program to find slope of a line

• Difficulty Level : Easy
• Last Updated : 04 Sep, 2021

Given two coordinates, find the slope of a straight line.

Examples:

Input  : x1 = 4, y1 = 2,
x2 = 2, y2 = 5
Output : Slope is -1.5

Approach: To calculate the slope of a line you need only two points from that line, (x1, y1) and (x2, y2). The equation used to calculate the slope from two points is:

Below is the implementation of the above approach:

## C++

 // C++ program for slope of line#include using namespace std; // function to find the slope of a straight linefloat slope(float x1, float y1, float x2, float y2){    return (y2 - y1) / (x2 - x1);} // driver code to check the above functionint main(){    float x1 = 4, y1 = 2;    float x2 = 2, y2 = 5;    cout << "Slope is: "         << slope(x1, y1, x2, y2);    return 0;}

## Java

 // Java program for slope of lineimport java.io.*; class GFG {    static float slope(float x1, float y1,                       float x2, float y2)    {        return (y2 - y1) / (x2 - x1);    }    public static void main(String[] args)    {        float x1 = 4, y1 = 2;        float x2 = 2, y2 = 5;        System.out.println("Slope is " +                    slope(x1, y1, x2, y2));    }}

## Python

 # Python program for slope of linedef slope(x1, y1, x2, y2):    return (float)(y2-y1)/(x2-x1) # driver code   x1 = 4y1 = 2x2 = 2y2 = 5print "Slope is :", slope(x1, y1, x2, y2)

## C#

 // C# program for slope of lineusing System; class GFG{    static float slope(float x1, float y1,                       float x2, float y2)    {        return (y2 - y1) / (x2 - x1);    }         // Driver code    public static void Main()    {        float x1 = 4, y1 = 2;        float x2 = 2, y2 = 5;        Console.WriteLine("Slope is " +                    slope(x1, y1, x2, y2));    }} // This code is contributed by vt_m.



## Javascript


Output
Slope is: -1.5

Time Complexity: O(1)

Auxiliary Space: O(1)

Special Case: The above code will throw a runtime error when int the function x1 is equal to x2 (x1==x2). In that case, our denominator will become zero(0). To avoid that condition, we will add a condition in the slope function.

## C++

 // C++ program for slope of line#include using namespace std; // function to find the slope of a straight linefloat slope(float x1, float y1, float x2, float y2){    if(x1 == x2)        return INT_MAX;    return (y2 - y1) / (x2 - x1);} // driver code to check the above functionint main(){    float x1 = 4, y1 = 2;    float x2 = 2, y2 = 5;    cout << "Slope is: "         << slope(x1, y1, x2, y2);    return 0;}

## Java

 // Java program for slope of line import java.util.*; class GFG {     // function to find the slope of a straight line    static float slope(float x1, float y1, float x2, float y2) {        if (x1 == x2)            return Integer.MAX_VALUE;        return (y2 - y1) / (x2 - x1);    }     // driver code to check the above function    public static void main(String[] args) {        float x1 = 4, y1 = 2;        float x2 = 2, y2 = 5;        System.out.print("Slope is: " + slope(x1, y1, x2, y2));    }} // This code contributed by Rajput-Ji

## Python3

 # Python3 program to find slopeimport sys # Function to find the slope of a straight linedef slope(x1, y1, x2, y2):         if x1 == x2:        return (sys.maxsize)             return ((y2 - y1) / (x2 - x1)) # Driver codex1 = 4y1 = 2x2 = 2y2 = 5 print("Slope is :", slope(4, 2, 2, 5)) # This code is contributed by vaishaligoyal878

## C#

 // C# program for slope of lineusing System;class GFG {     // function to find the slope of a straight line    static float slope(float x1, float y1, float x2, float y2) {        if (x1 == x2)            return 1000000000;        return (y2 - y1) / (x2 - x1);    }     // driver code to check the above function    public static void Main(string[] args) {        float x1 = 4, y1 = 2;        float x2 = 2, y2 = 5;        Console.Write("Slope is: " + slope(x1, y1, x2, y2));    }} // This code is contributed by famously.

## Javascript


Output
Slope is: -1.5

Time Complexity: O(1)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up