Related Articles
Program to find correlation coefficient
• Difficulty Level : Easy
• Last Updated : 28 Apr, 2021

Given two array elements and we have to find the correlation coefficient between two array. Correlation coefficient is an equation that is used to determine the strength of relation between two variables. Correlation coefficient sometimes called as cross correlation coefficient. Correlation coefficient always lies between -1 to +1 where -1 represents X and Y are negatively correlated and +1 represents X and Y are positively correlated. Where r is correlation coefficient. ```Correlation coefficient
= (5 * 3000 - 105 * 140)
/ sqrt((5 * 2295 - 1052)*(5*3964 - 1402))
= 300 / sqrt(450 * 220) = 0.953463```

Examples :

```Input : X[] = {43, 21, 25, 42, 57, 59}
Y[] = {99, 65, 79, 75, 87, 81}
Output : 0.529809

Input : X[] = {15, 18, 21, 24, 27};
Y[] = {25, 25, 27, 31, 32}
Output : 0.953463```

## C++

 `// Program to find correlation coefficient``#include` `using` `namespace` `std;` `// function that returns correlation coefficient.``float` `correlationCoefficient(``int` `X[], ``int` `Y[], ``int` `n)``{` `    ``int` `sum_X = 0, sum_Y = 0, sum_XY = 0;``    ``int` `squareSum_X = 0, squareSum_Y = 0;` `    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``// sum of elements of array X.``        ``sum_X = sum_X + X[i];` `        ``// sum of elements of array Y.``        ``sum_Y = sum_Y + Y[i];` `        ``// sum of X[i] * Y[i].``        ``sum_XY = sum_XY + X[i] * Y[i];` `        ``// sum of square of array elements.``        ``squareSum_X = squareSum_X + X[i] * X[i];``        ``squareSum_Y = squareSum_Y + Y[i] * Y[i];``    ``}` `    ``// use formula for calculating correlation coefficient.``    ``float` `corr = (``float``)(n * sum_XY - sum_X * sum_Y)``                  ``/ ``sqrt``((n * squareSum_X - sum_X * sum_X)``                      ``* (n * squareSum_Y - sum_Y * sum_Y));` `    ``return` `corr;``}` `// Driver function``int` `main()``{` `    ``int` `X[] = {15, 18, 21, 24, 27};``    ``int` `Y[] = {25, 25, 27, 31, 32};` `    ``//Find the size of array.``    ``int` `n = ``sizeof``(X)/``sizeof``(X);` `    ``//Function call to correlationCoefficient.``    ``cout<

## Java

 `// JAVA Program to find correlation coefficient``import` `java.math.*;` `class` `GFG {` `    ``// function that returns correlation coefficient.``    ``static` `float` `correlationCoefficient(``int` `X[],``                                    ``int` `Y[], ``int` `n)``    ``{``     ` `        ``int` `sum_X = ``0``, sum_Y = ``0``, sum_XY = ``0``;``        ``int` `squareSum_X = ``0``, squareSum_Y = ``0``;``     ` `        ``for` `(``int` `i = ``0``; i < n; i++)``        ``{``            ``// sum of elements of array X.``            ``sum_X = sum_X + X[i];``     ` `            ``// sum of elements of array Y.``            ``sum_Y = sum_Y + Y[i];``     ` `            ``// sum of X[i] * Y[i].``            ``sum_XY = sum_XY + X[i] * Y[i];``     ` `            ``// sum of square of array elements.``            ``squareSum_X = squareSum_X + X[i] * X[i];``            ``squareSum_Y = squareSum_Y + Y[i] * Y[i];``        ``}``     ` `        ``// use formula for calculating correlation``        ``// coefficient.``        ``float` `corr = (``float``)(n * sum_XY - sum_X * sum_Y)/``                     ``(``float``)(Math.sqrt((n * squareSum_X -``                     ``sum_X * sum_X) * (n * squareSum_Y -``                     ``sum_Y * sum_Y)));``     ` `        ``return` `corr;``    ``}``     ` `    ``// Driver function``    ``public` `static` `void` `main(String args[])``    ``{``     ` `        ``int` `X[] = {``15``, ``18``, ``21``, ``24``, ``27``};``        ``int` `Y[] = {``25``, ``25``, ``27``, ``31``, ``32``};``     ` `        ``// Find the size of array.``        ``int` `n = X.length;``     ` `        ``// Function call to correlationCoefficient.``        ``System.out.printf(``"%6f"``,``                 ``correlationCoefficient(X, Y, n));``     ` `        ` `    ``}``}` `/*This code is contributed by Nikita Tiwari.*/`

## Python

 `# Python Program to find correlation coefficient.``import` `math` `# function that returns correlation coefficient.``def` `correlationCoefficient(X, Y, n) :``    ``sum_X ``=` `0``    ``sum_Y ``=` `0``    ``sum_XY ``=` `0``    ``squareSum_X ``=` `0``    ``squareSum_Y ``=` `0``    ` `    ` `    ``i ``=` `0``    ``while` `i < n :``        ``# sum of elements of array X.``        ``sum_X ``=` `sum_X ``+` `X[i]``        ` `        ``# sum of elements of array Y.``        ``sum_Y ``=` `sum_Y ``+` `Y[i]``        ` `        ``# sum of X[i] * Y[i].``        ``sum_XY ``=` `sum_XY ``+` `X[i] ``*` `Y[i]``        ` `        ``# sum of square of array elements.``        ``squareSum_X ``=` `squareSum_X ``+` `X[i] ``*` `X[i]``        ``squareSum_Y ``=` `squareSum_Y ``+` `Y[i] ``*` `Y[i]``        ` `        ``i ``=` `i ``+` `1``     ` `    ``# use formula for calculating correlation``    ``# coefficient.``    ``corr ``=` `(``float``)(n ``*` `sum_XY ``-` `sum_X ``*` `sum_Y)``/``           ``(``float``)(math.sqrt((n ``*` `squareSum_X ``-``           ``sum_X ``*` `sum_X)``*` `(n ``*` `squareSum_Y ``-``           ``sum_Y ``*` `sum_Y)))``    ``return` `corr``    ` `# Driver function``X ``=` `[``15``, ``18``, ``21``, ``24``, ``27``]``Y ``=` `[``25``, ``25``, ``27``, ``31``, ``32``]``     ` `# Find the size of array.``n ``=` `len``(X)` `# Function call to correlationCoefficient.``print` `(``'{0:.6f}'``.``format``(correlationCoefficient(X, Y, n)))` `# This code is contributed by Nikita Tiwari.`

## C#

 `// C# Program to find correlation coefficient``using` `System;` `class` `GFG {`` ` `    ``// function that returns correlation coefficient.``    ``static` `float` `correlationCoefficient(``int` `[]X, ``int` `[]Y,``                                                   ``int` `n)``    ``{``        ``int` `sum_X = 0, sum_Y = 0, sum_XY = 0;``        ``int` `squareSum_X = 0, squareSum_Y = 0;``      ` `        ``for` `(``int` `i = 0; i < n; i++)``        ``{``            ``// sum of elements of array X.``            ``sum_X = sum_X + X[i];``      ` `            ``// sum of elements of array Y.``            ``sum_Y = sum_Y + Y[i];``      ` `            ``// sum of X[i] * Y[i].``            ``sum_XY = sum_XY + X[i] * Y[i];``      ` `            ``// sum of square of array elements.``            ``squareSum_X = squareSum_X + X[i] * X[i];``            ``squareSum_Y = squareSum_Y + Y[i] * Y[i];``        ``}``      ` `        ``// use formula for calculating correlation``        ``// coefficient.``        ``float` `corr = (``float``)(n * sum_XY - sum_X * sum_Y)/``                     ``(``float``)(Math.Sqrt((n * squareSum_X -``                     ``sum_X * sum_X) * (n * squareSum_Y -``                     ``sum_Y * sum_Y)));``      ` `        ``return` `corr;``    ``}``      ` `    ``// Driver function``    ``public` `static` `void` `Main()``    ``{``      ` `        ``int` `[]X = {15, 18, 21, 24, 27};``        ``int` `[]Y = {25, 25, 27, 31, 32};``      ` `        ``// Find the size of array.``        ``int` `n = X.Length;``      ` `        ``// Function call to correlationCoefficient.``        ``Console.Write(Math.Round(correlationCoefficient(X, Y, n) *``                                            ``1000000.0)/1000000.0);``      ` `         ` `    ``}``}`` ` `//This code is contributed by Anant Agarwal.`

## PHP

 ``

## Javascript

 ``

Output :

`0.953463`

Reference –
Correlation coefficient – Wikipedia
This article is contributed by Dharmendra Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.