Program for distance between two points on earth

Given latitude and longitude in degrees find the distance between two points on the earth.


Image Source : Wikipedia

Examples:



Input : Latitude 1: 53.32055555555556
        Latitude 2: 53.31861111111111
        Longitude 1: -1.7297222222222221
        Longitude 2: -1.6997222222222223
Output: Distance is: 2.0043678382716137 Kilometers

Problem can be solved using Haversine formula:

The great circle distance or the orthodromic distance is the shortest distance between two points on a sphere (or the surface of Earth). In order to use this method, we need to have the co-ordinates of point A and point B.The great circle method is chosen over other methods.

First, convert the latitude and longitude values from decimal degrees to radians. For this divide the values of longitude and latitude of both the points by 180/pi. The value of pi is 22/7. The value of 180/pi is approximately 57.29577951. If we want to calculate the distance between two places in miles, use the value 3, 963, which is the radius of Earth. If we want to calculate the distance between two places in kilometers, use the value 6, 378.8, which is the radius of Earth.

Find the value of the latitude in radians:

Value of Latitude in Radians, lat = Latitude / (180/pi) OR

Value of Latitude in Radians, lat = Latitude / 57.29577951

Find the value of longitude in radians:

Value of Longitude in Radians, long = Longitude / (180/pi) OR

Value of Longitude in Radians, long = Longitude / 57.29577951


Get the co-ordinates of point A in terms of latitude and longitude. Use the above conversion method to convert the values of latitude and longitude in radians. I will call it as lat1 and long1. Do the same for the co-ordinates of Point B and get lat2 and long2.

Now, to get the distance between point A and point B use the following formula:

Distance, d = 3963.0 * arccos[(sin(lat1) * sin(lat2)) + cos(lat1) * cos(lat2) * cos(long2 – long1)]

The obtained distance, d, is in miles. If you want your value to be in units of kilometers, multiple d by 1.609344.

d in kilometers = 1.609344 * d in miles

Thus you can have the shortest distance between two places on Earth using the great circle distance approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to calculate Distance 
// Between Two Points on Earth
#include <bits/stdc++.h>
using namespace std;
  
// Utility function for 
// converting degrees to radians
long double toRadians(const long double °ree)
{
    // cmath library in C++ 
    // defines the constant
    // M_PI as the value of
    // pi accurate to 1e-30
    long double one_deg = (M_PI) / 180;
    return (one_deg * degree);
}
  
long double distance(long double lat1, long double long1, 
                     long double lat2, long double long2)
{
    // Convert the latitudes 
    // and longitudes
    // from degree to radians.
    lat1 = toRadians(lat1);
    long1 = toRadians(long1);
    lat2 = toRadians(lat2);
    long2 = toRadians(long2);
      
    // Haversine Formula
    long double dlong = long2 - long1;
    long double dlat = lat2 - lat1;
  
    long double ans = pow(sin(dlat / 2), 2) + 
                          cos(lat1) * cos(lat2) * 
                          pow(sin(dlong / 2), 2);
  
    ans = 2 * asin(sqrt(ans));
  
    // Radius of Earth in 
    // Kilometers, R = 6371
    // Use R = 3956 for miles
    long double R = 6371;
      
    // Calculate the result
    ans = ans * R;
  
    return ans;
}
  
// Driver Code
int main()
{
    long double lat1 = 53.32055555555556;
    long double long1 = -1.7297222222222221;
    long double lat2 = 53.31861111111111;
    long double long2 = -1.6997222222222223;
      
    // call the distance function
    cout << setprecision(15) << fixed;
    cout << distance(lat1, long1, 
                     lat2, long2) << " K.M";
  
    return 0;
}
  
// This code is contributed
// by Aayush Chaturvedi

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to calculate Distance Between
// Two Points on Earth
import java.util.*;
import java.lang.*;
  
class GFG {
  
    public static double distance(double lat1,
                     double lat2, double lon1,
                                  double lon2)
    {
  
        // The math module contains a function
        // named toRadians which converts from
        // degrees to radians.
        lon1 = Math.toRadians(lon1);
        lon2 = Math.toRadians(lon2);
        lat1 = Math.toRadians(lat1);
        lat2 = Math.toRadians(lat2);
  
        // Haversine formula 
        double dlon = lon2 - lon1; 
        double dlat = lat2 - lat1;
        double a = Math.pow(Math.sin(dlat / 2), 2)
                 + Math.cos(lat1) * Math.cos(lat2)
                 * Math.pow(Math.sin(dlon / 2),2);
              
        double c = 2 * Math.asin(Math.sqrt(a));
  
        // Radius of earth in kilometers. Use 3956 
        // for miles
        double r = 6371;
  
        // calculate the result
        return(c * r);
    
  
    // driver code
    public static void main(String[] args)
    {
        double lat1 = 53.32055555555556;
        double lat2 = 53.31861111111111;
        double lon1 = -1.7297222222222221;
        double lon2 = -1.6997222222222223;
        System.out.println(distance(lat1, lat2,
                           lon1, lon2) + " K.M");
    }
}
  
// This code is contributed by Prasad Kshirsagar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to calculate Distance Between Two Points on Earth
from math import radians, cos, sin, asin, sqrt
def distance(lat1, lat2, lon1, lon2):
      
    # The math module contains a function named
    # radians which converts from degrees to radians.
    lon1 = radians(lon1)
    lon2 = radians(lon2)
    lat1 = radians(lat1)
    lat2 = radians(lat2)
       
    # Haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1
    a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
  
    c = 2 * asin(sqrt(a)) 
     
    # Radius of earth in kilometers. Use 3956 for miles
    r = 6371
       
    # calculate the result
    return(c * r)
      
      
# driver code 
lat1 = 53.32055555555556
lat2 = 53.31861111111111
lon1 = -1.7297222222222221
lon2 =  -1.6997222222222223
print(distance(lat1, lat2, lon1, lon2), "K.M")

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to calculate 
// Distance Between Two
// Points on Earth
using System;
  
class GFG 
{
    static double toRadians(
           double angleIn10thofaDegree) 
    {
        // Angle in 10th
        // of a degree
        return (angleIn10thofaDegree *  
                       Math.PI) / 180; 
    
    static double distance(double lat1,
                           double lat2, 
                           double lon1,
                           double lon2)
    {
  
        // The math module contains 
        // a function named toRadians 
        // which converts from degrees 
        // to radians.
        lon1 = toRadians(lon1);
        lon2 = toRadians(lon2);
        lat1 = toRadians(lat1);
        lat2 = toRadians(lat2);
  
        // Haversine formula 
        double dlon = lon2 - lon1; 
        double dlat = lat2 - lat1;
        double a = Math.Pow(Math.Sin(dlat / 2), 2) + 
                   Math.Cos(lat1) * Math.Cos(lat2) * 
                   Math.Pow(Math.Sin(dlon / 2),2);
              
        double c = 2 * Math.Asin(Math.Sqrt(a));
  
        // Radius of earth in 
        // kilometers. Use 3956 
        // for miles
        double r = 6371;
  
        // calculate the result
        return (c * r);
    
  
    // Driver code
    static void Main()
    {
        double lat1 = 53.32055555555556;
        double lat2 = 53.31861111111111;
        double lon1 = -1.7297222222222221;
        double lon2 = -1.6997222222222223;
        Console.WriteLine(distance(lat1, lat2,
                          lon1, lon2) + " K.M");
    }
}
  
// This code is contributed by 
// Manish Shaw(manishshaw1)

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
         
      function twopoints_on_earth($latitudeFrom, $longitudeFrom,
                                    $latitudeTo$longitudeTo)
      {
           $long1 = deg2rad($longitudeFrom);
           $long2 = deg2rad($longitudeTo);
           $lat1 = deg2rad($latitudeFrom);
           $lat2 = deg2rad($latitudeTo);
              
           //Haversine Formula
           $dlong = $long2 - $long1;
           $dlati = $lat2 - $lat1;
              
           $val = pow(sin($dlati/2),2)+cos($lat1)*cos($lat2)*pow(sin($dlong/2),2);
              
           $res = 2 * asin(sqrt($val));
              
           $radius = 3958.756;
              
           return ($res*$radius);
      }
  
      // latitude and longitude of Two Points
      $latitudeFrom = 19.017656 ;
      $longitudeFrom = 72.856178;
      $latitudeTo = 40.7127;
      $longitudeTo = -74.0059;
         
      // Distance between Mumbai and New York
      print_r(twopoints_on_earth( $latitudeFrom, $longitudeFrom
                    $latitudeTo$longitudeTo).' '.'miles');
  
// This code is contributed by akash1295
?>

chevron_right



Output:

2.0043678382716137 K.M

Reference: Wikipedia



My Personal Notes arrow_drop_up

Contented with little yet wishing for more

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.