Open In App
Related Articles

Program for Derivative of a Polynomial

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a polynomial as a string and a value. Evaluate polynomial’s derivative for the given value. 
Note: The input format is such that there is a white space between a term and the ‘+’ symbol

The derivative of p(x) = ax^n is p'(x) = a*n*x^(n-1)
Also, if p(x) = p1(x) + p2(x) 
Here p1 and p2 are polynomials too 
p'(x) = p1′(x) + p2′(x) 

Input : 3x^3 + 4x^2 + 6x^1 + 89x^0
        2             
Output :58 
Explanation : Derivative of given
polynomial is : 9x^2 + 8x^1 + 6
Now put x = 2
9*4 + 8*2 + 6 = 36 + 16 + 6 = 58  
            
Input : 1x^3
        3
Output : 27

We split the input string into tokens and for each term calculate the derivative separately for each term and add them to get the result. 

C++




// C++ program to find value of derivative of
// a polynomial.
#include <bits/stdc++.h>
using namespace std;
  
long long derivativeTerm(string pTerm, long long val)
{
    // Get coefficient
    string coeffStr = "";
    int i;
    for (i = 0; pTerm[i] != 'x'; i++)
        coeffStr.push_back(pTerm[i]);
    long long coeff = atol(coeffStr.c_str());
  
    // Get Power (Skip 2 characters for x and ^)
    string powStr = "";
    for (i = i + 2; i != pTerm.size(); i++)
        powStr.push_back(pTerm[i]);
    long long power = atol(powStr.c_str());
  
    // For ax^n, we return anx^(n-1) 
    return coeff * power * pow(val, power - 1);
}
  
long long derivativeVal(string& poly, int val)
{
    long long ans = 0;
  
    // We use istringstream to get input in tokens
    istringstream is(poly);
  
    string pTerm;
    while (is >> pTerm) {
  
        // If the token is equal to '+' then
        // continue with the string
        if (pTerm == "+")
            continue;
        
  
        // Otherwise find the derivative of that
        // particular term
        else
            ans = (ans + derivativeTerm(pTerm, val));
    }
    return ans;
}
  
// Driver code
int main()
{
    string str = "4x^3 + 3x^1 + 2x^2";
    int val = 2;
    cout << derivativeVal(str, val);
    return 0;
}

Java




// Java program to find value of derivative of
// a polynomial
import java.io.*;
class GFG 
{
  
  static long derivativeTerm(String pTerm, long val)
  {
  
    // Get coefficient
    String coeffStr = "";
    int i;
    for (i = 0; pTerm.charAt(i) != 'x' ; i++)
    {
      if(pTerm.charAt(i)==' ')
        continue;
      coeffStr += (pTerm.charAt(i));
    }
  
    long coeff = Long.parseLong(coeffStr);
  
    // Get Power (Skip 2 characters for x and ^)
    String powStr = "";  
    for (i = i + 2; i != pTerm.length() && pTerm.charAt(i) != ' '; i++)
    {
      powStr += pTerm.charAt(i);
    }
  
    long power=Long.parseLong(powStr);
  
    // For ax^n, we return a(n)x^(n-1)
    return coeff * power * (long)Math.pow(val, power - 1);
  }
  static long derivativeVal(String poly, int val)
  {
    long ans = 0;
  
    int i = 0;
    String[] stSplit = poly.split("\\+");
    while(i<stSplit.length)
    {
      ans = (ans +derivativeTerm(stSplit[i], val));
      i++;
    }
    return ans;
  }
  
  // Driver code
  public static void main (String[] args) {
  
    String str = "4x^3 + 3x^1 + 2x^2";
    int val = 2;
  
    System.out.println(derivativeVal(str, val));
  }
}
  
// This code is contributed by avanitrachhadiya2155

Python3




# Python3 program to find 
# value of derivative of
# a polynomial.
def derivativeTerm(pTerm, val):
  
    # Get coefficient
    coeffStr = ""
  
    i = 0
    while (i < len(pTerm) and 
           pTerm[i] != 'x'):
        coeffStr += (pTerm[i])
        i += 1
          
    coeff = int(coeffStr)
  
    # Get Power (Skip 2 characters 
    # for x and ^)
    powStr = ""
    j = i + 2
    while j < len(pTerm):
        powStr += (pTerm[j])
        j += 1
     
    power = int(powStr)
  
    # For ax^n, we return 
    # a(n)x^(n-1)
    return (coeff * power * 
            pow(val, power - 1))
  
def derivativeVal(poly, val):
  
    ans = 0
    i = 0
    stSplit = poly.split("+"
     
    while (i < len(stSplit)):      
        ans = (ans + 
               derivativeTerm(stSplit[i], 
                              val))
        i += 1
  
    return ans
  
# Driver code
if __name__ == "__main__":
  
    st = "4x^3 + 3x^1 + 2x^2"
    val = 2    
    print(derivativeVal(st, val))
  
# This code is contributed by Chitranayal

C#




// C# program to find value of derivative of
// a polynomial
using System;
  
class GFG{
  
static long derivativeTerm(string pTerm, long val)
{
  
    // Get coefficient
    string coeffStr = "";
    int i;
      
    for(i = 0; pTerm[i] != 'x'; i++)
    {
        if (pTerm[i] == ' ')
            continue;
              
        coeffStr += (pTerm[i]);
    }
      
    long coeff = long.Parse(coeffStr);
      
    // Get Power (Skip 2 characters for x and ^)
    string powStr = "";  
    for(i = i + 2; 
        i != pTerm.Length && pTerm[i] != ' '
        i++)
    {
        powStr += pTerm[i];
    }
      
    long power = long.Parse(powStr);
      
    // For ax^n, we return a(n)x^(n-1)
    return coeff * power * (long)Math.Pow(val, power - 1);
}
  
static long derivativeVal(string poly, int val)
{
    long ans = 0;
      
    int i = 0;
    String[] stSplit = poly.Split("+");
      
    while (i < stSplit.Length)
    {
        ans = (ans +derivativeTerm(stSplit[i], val));
        i++;
    }
    return ans;
}
  
// Driver code
static public void Main()
{
    String str = "4x^3 + 3x^1 + 2x^2";
    int val = 2;
      
    Console.WriteLine(derivativeVal(str, val));
}
}
  
// This code is contributed by rag2127

Javascript




<script>
// Javascript program to find value of derivative of
// a polynomial
  
function derivativeTerm( pTerm,val)
{
    // Get coefficient
    let coeffStr = "";
    let i;
    for (i = 0; pTerm[i] != 'x' ; i++)
    {
      if(pTerm[i]==' ')
        continue;
      coeffStr += (pTerm[i]);
    }
   
    let coeff = parseInt(coeffStr);
   
    // Get Power (Skip 2 characters for x and ^)
    let powStr = ""
    for (i = i + 2; i != pTerm.length && pTerm[i] != ' '; i++)
    {
      powStr += pTerm[i];
    }
   
    let power=parseInt(powStr);
   
    // For ax^n, we return a(n)x^(n-1)
    return coeff * power * Math.pow(val, power - 1);
}
  
function derivativeVal(poly,val)
{
    let ans = 0;
   
    let i = 0;
    let stSplit = poly.split("+");
    while(i<stSplit.length)
    {
      ans = (ans +derivativeTerm(stSplit[i], val));
      i++;
    }
    return ans;
}
  
 // Driver code
let str = "4x^3 + 3x^1 + 2x^2";
let val = 2;
document.write(derivativeVal(str, val));
  
  
// This code is contributed by ab2127
</script>

Output

59

Time Complexity: O(n), where n is the number of terms in the polynomial.
Auxiliary Space: O(1)

This article is contributed by Ankit Jain. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Last Updated : 18 Sep, 2023
Like Article
Save Article
Similar Reads
Related Tutorials