Skip to content
Related Articles

Related Articles

Program to compute division upto n decimal places
  • Difficulty Level : Basic
  • Last Updated : 27 Jul, 2018

Given 3 numbers x, y and n compute the division (x/y) upto n decimal places.

Examples :

Input  : x = 22, y = 7, n = 10
Output : 3.1428571428
Explanation :
Since n = 10, division (x / y) is taken till
10 decimal places.

Input  : x = 22, y = 7, n = 20
Output : 3.14285714285714285714

Approach :

  1. Get the remainder and get it subtracted by the dividend, multiply it by ten and go to the next iteration.
  2. If we reach the complete result, we may not need to continue until the pre-defined number of iterations are reached.

C++




// CPP program to compute division upto n
// decimal places.
#include <bits/stdc++.h>
using namespace std;
  
void precisionCompute(int x, int y, int n)
{
    // Base cases
    if (y == 0) {
        cout << "Infinite" << endl;
        return;
    }
    if (x == 0) {
        cout << 0 << endl;
        return;
    }
    if (n <= 0) {
        // Since n <= 0, don't compute after
        // the decimal
        cout << x / y << endl;
        return;
    }
  
    // Handling negative numbers
    if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
        cout << "-";
        x = x > 0 ? x : -x;
        y = y > 0 ? y : -y;
    }
  
    // Integral division
    int d = x / y;
  
    // Now one by print digits after dot
    // using school division method.
    for (int i = 0; i <= n; i++) {
        cout << d;
        x = x - (y * d);
        if (x == 0)
            break;
        x = x * 10;
        d = x / y;
        if (i == 0)
            cout << ".";
    }
}
  
// Driver Program
int main()
{
    int x = 22, y = 7, n = 15;
    precisionCompute(x, y, n);
    return 0;
}


Java




// Java program to compute division upto n
// decimal places.
import java.util.*;
  
class Eulerian {
    public static void precisionCompute(int x, int y, int n)
    {
        // Base cases
        if (y == 0) {
            System.out.print("Infinite");
            return;
        }
        if (x == 0) {
            System.out.print("0");
            return;
        }
        if (n <= 0) {
            // Since n <= 0, don't compute after
            // the decimal
            System.out.print(x / y);
            return;
        }
  
        // Handling negative numbers
        if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
            System.out.print("-");
            x = x > 0 ? x : -x;
            y = y > 0 ? y : -y;
        }
  
        // Integral division
        int d = x / y;
  
        // Now one by print digits after dot
        // using school division method.
        for (int i = 0; i <= n; i++) {
            System.out.print(d);
            x = x - (y * d);
            if (x == 0)
                break;
            x = x * 10;
            d = x / y;
            if (i == 0)
                System.out.print(".");
        }
    }
  
    public static void main(String[] args)
    {
        int x = 22, y = 7, n = 15;
        precisionCompute(x, y, n);
    }
}
  
// This code is contributed by rishabh_jain


C#




// C# program to compute division
// upto n decimal places.
using System;
  
class Eulerian {
  
    public static void precisionCompute(int x, int y,
                                        int n)
    {
        // Base cases
        if (y == 0) {
            Console.WriteLine("Infinite");
            return;
        }
        if (x == 0) {
            Console.WriteLine("0");
            return;
        }
        if (n <= 0) {
  
            // Since n <= 0, don't compute after
            // the decimal
            Console.WriteLine(x / y);
            return;
        }
  
        // Handling negative numbers
        if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
            Console.WriteLine("-");
            x = x > 0 ? x : -x;
            y = y > 0 ? y : -y;
        }
  
        // Integral division
        int d = x / y;
  
        // Now one by print digits after dot
        // using school division method.
        for (int i = 0; i <= n; i++) {
            Console.Write(d);
            x = x - (y * d);
            if (x == 0)
                break;
            x = x * 10;
            d = x / y;
            if (i == 0)
                Console.Write(".");
        }
    }
  
    // Driver code
    public static void Main()
    {
        int x = 22, y = 7, n = 15;
        precisionCompute(x, y, n);
    }
}
  
// This code is contributed by vt_m


PHP




<?php
// PHP program to compute
// division upto n decimal
// places.
  
function precisionCompute($x, $y, $n)
{
    // Base cases
    if ($y == 0) 
    
        echo "Infinite", "\n";
        return;
    }
    if ($x == 0) 
    {
        echo 0, "\n";
        return;
    }
    if ($n <= 0) 
    {
        // Since n <= 0, don't  
        // compute after the decimal
        echo $x / $y, "\n";
        return;
    }
  
    // Handling negative numbers
    if ((($x > 0) && ($y < 0)) ||
        (($x < 0) && ($y > 0)))
    {
        echo "-";
        $x = $x > 0 ? $x : -$x;
        $y = $y > 0 ? $y : -$y;
    }
  
    // Integral division
    $d = $x / $y
  
    // Now one by print digits after dot
    // using school division method.
    for ($i = 0; $i <= $n; $i++) 
    {
        echo $d;
        $x = $x - ($y * $d);
        if ($x == 0)
            break
        $x = $x * 10;
        $d = $x / $y;
        if ($i == 0)
            echo ".";
    }
}
  
// Driver Code
$x = 22; $y = 7; $n = 15;
  
precisionCompute($x, $y, $n);
  
// This code is contributed by aj_36 
?>


Python3




# Python3 program to compute 
# division upto n decimal places.
  
def precisionCompute(x, y, n):
      
    # Base cases
    if y == 0:
        print("Infinite");
        return;
    if x == 0:
        print(0);
        return;
    if n <= 0:
          
        # Since n <= 0, don't
        # compute after the decimal
        print(x / y);
        return;
          
    # Handling negative numbers
    if (((x > 0) and (y < 0)) or 
        ((x < 0) and (y > 0))):
        print("-", end = "");
        if x < 0:
            x = -x;
        if y < 0:
            y = -y;
              
    # Integral division
    d = x / y;
      
    # Now one by print digits 
    # after dot using school 
    # division method.
    for i in range(0, n + 1):
        print(d);
        x = x - (y * d);
        if x == 0:
            break;
        x = x * 10;
        d = x / y;
        if (i == 0):
            print(".", end = "");
  
# Driver Code
x = 22;
y = 7;
n = 15;
precisionCompute(x, y, n);
  
# This code is contributed by mits



Output :

3.142857142857142

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :