Program to add two polynomials

Given two polynomials represented by two arrays, write a function that adds given two polynomials.

Example:

Input:  A[] = {5, 0, 10, 6} 
        B[] = {1, 2, 4} 
Output: sum[] = {6, 2, 14, 6}

The first input array represents "5 + 0x^1 + 10x^2 + 6x^3"
The second array represents "1 + 2x^1 + 4x^2" 
And Output is "6 + 2x^1 + 14x^2 + 6x^3"

We strongly recommend to minimize your browser and try this yourself first.
Addition is simpler than multiplication of polynomials. We initialize result as one of the two polynomials, then we traverse the other polynomial and add all terms to the result.

add(A[0..m-1], B[0..n01])
1) Create a sum array sum[] of size equal to maximum of 'm' and 'n'
2) Copy A[] to sum[].
3) Travers array B[] and do following for every element B[i]
          sum[i] = sum[i] + B[i]
4) Return sum[].

The following is implementation of above algorithm.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple C++ program to add two polynomials
#include <iostream>
using namespace std;
  
// A utility function to return maximum of two integers
int max(int m, int n) {  return (m > n)? m: n; }
  
// A[] represents coefficients of first polynomial
// B[] represents coefficients of second polynomial
// m and n are sizes of A[] and B[] respectively
int *add(int A[], int B[], int m, int n)
{
   int size = max(m, n);
   int *sum = new int[size];
  
   // Initialize the porduct polynomial
   for (int i = 0; i<m; i++)
     sum[i] = A[i];
  
   // Take ever term of first polynomial
   for (int i=0; i<n; i++)
       sum[i] += B[i];
  
   return sum;
}
  
// A utility function to print a polynomial
void printPoly(int poly[], int n)
{
    for (int i=0; i<n; i++)
    {
       cout << poly[i];
       if (i != 0)
        cout << "x^" << i ;
       if (i != n-1)
       cout << " + ";
    }
}
  
// Driver program to test above functions
int main()
{
    // The following array represents polynomial 5 + 10x^2 + 6x^3
    int A[] = {5, 0, 10, 6};
  
    // The following array represents polynomial 1 + 2x + 4x^2
    int B[] = {1, 2, 4};
    int m = sizeof(A)/sizeof(A[0]);
    int n = sizeof(B)/sizeof(B[0]);
  
    cout << "First polynomial is \n";
    printPoly(A, m);
    cout << "\nSecond polynomial is \n";
    printPoly(B, n);
  
    int *sum = add(A, B, m, n);
    int size = max(m, n);
  
    cout << "\nsum polynomial is \n";
    printPoly(sum, size);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to add two polynomials
  
class GFG {
  
// A utility function to return maximum of two integers 
    static int max(int m, int n) {
        return (m > n) ? m : n;
    }
  
// A[] represents coefficients of first polynomial 
// B[] represents coefficients of second polynomial 
// m and n are sizes of A[] and B[] respectively 
    static int[] add(int A[], int B[], int m, int n) {
        int size = max(m, n);
        int sum[] = new int[size];
  
// Initialize the porduct polynomial 
        for (int i = 0; i < m; i++) {
            sum[i] = A[i];
        }
  
// Take ever term of first polynomial 
        for (int i = 0; i < n; i++) {
            sum[i] += B[i];
        }
  
        return sum;
    }
  
// A utility function to print a polynomial 
    static void printPoly(int poly[], int n) {
        for (int i = 0; i < n; i++) {
            System.out.print(poly[i]);
            if (i != 0) {
                System.out.print("x^" + i);
            }
            if (i != n - 1) {
                System.out.print(" + ");
            }
        }
    }
  
// Driver program to test above functions 
    public static void main(String[] args) {
        // The following array represents polynomial 5 + 10x^2 + 6x^3 
        int A[] = {5, 0, 10, 6};
  
        // The following array represents polynomial 1 + 2x + 4x^2 
        int B[] = {1, 2, 4};
        int m = A.length;
        int n = B.length;
        System.out.println("First polynomial is");
        printPoly(A, m);
        System.out.println("\nSecond polynomial is");
        printPoly(B, n);
        int sum[] = add(A, B, m, n);
        int size = max(m, n);
        System.out.println("\nsum polynomial is");
        printPoly(sum, size);
  
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Simple Python 3 program to add two
# polynomials
  
# A utility function to return maximum 
# of two integers
  
# A[] represents coefficients of first polynomial
# B[] represents coefficients of second polynomial
# m and n are sizes of A[] and B[] respectively
def add(A, B, m, n):
  
    size = max(m, n);
    sum = [0 for i in range(size)]
  
    # Initialize the porduct polynomial
      
    for i in range(0, m, 1):
        sum[i] = A[i]
  
    # Take ever term of first polynomial
    for i in range(n):
        sum[i] += B[i]
  
    return sum
  
# A utility function to print a polynomial
def printPoly(poly, n):
    for i in range(n):
        print(poly[i], end = "")
        if (i != 0):
            print("x^", i, end = "")
        if (i != n - 1):
            print(" + ", end = "")
  
# Driver Code
if __name__ == '__main__':
      
    # The following array represents
    # polynomial 5 + 10x^2 + 6x^3
    A = [5, 0, 10, 6]
  
    # The following array represents
    # polynomial 1 + 2x + 4x^2
    B = [1, 2, 4]
    m = len(A)
    n = len(B)
  
    print("First polynomial is")
    printPoly(A, m)
    print("\n", end = "")
    print("Second polynomial is")
    printPoly(B, n)
    print("\n", end = "")
    sum = add(A, B, m, n)
    size = max(m, n)
  
    print("sum polynomial is")
    printPoly(sum, size)
      
# This code is contributed by
# Sahil_Shelangia

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to add two polynomials
using System;
class GFG {
  
    // A utility function to return maximum of two integers 
    static int max(int m, int n) 
    {
        return (m > n) ? m : n;
    }
  
    // A[] represents coefficients of first polynomial 
    // B[] represents coefficients of second polynomial 
    // m and n are sizes of A[] and B[] respectively 
    static int[] add(int[] A, int[] B, int m, int n)
    {
        int size = max(m, n);
        int[] sum = new int[size];
  
        // Initialize the porduct polynomial 
        for (int i = 0; i < m; i++)
        {
            sum[i] = A[i];
        }
  
        // Take ever term of first polynomial 
        for (int i = 0; i < n; i++)
        {
            sum[i] += B[i];
        }
  
        return sum;
    }
  
    // A utility function to print a polynomial 
    static void printPoly(int[] poly, int n)  
    {
        for (int i = 0; i < n; i++)
        {
            Console.Write(poly[i]);
            if (i != 0) 
            {
                Console.Write("x^" + i);
            }
            if (i != n - 1) 
            {
                Console.Write(" + ");
            }
        }
    }
  
    // Driver code 
    public static void Main() 
    {
        // The following array represents 
        // polynomial 5 + 10x^2 + 6x^3 
        int[] A = {5, 0, 10, 6};
  
        // The following array represents 
        // polynomial 1 + 2x + 4x^2 
        int[] B = {1, 2, 4};
        int m = A.Length;
        int n = B.Length;
        Console.WriteLine("First polynomial is");
        printPoly(A, m);
        Console.WriteLine("\nSecond polynomial is");
        printPoly(B, n);
        int[] sum = add(A, B, m, n);
        int size = max(m, n);
        Console.WriteLine("\nsum polynomial is");
        printPoly(sum, size);
  
    }
}
  
//This Code is Contributed 
// by Mukul Singh

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Simple PHP program to add two polynomials
  
// A[] represents coefficients of first polynomial
// B[] represents coefficients of second polynomial
// m and n are sizes of A[] and B[] respectively
function add($A, $B, $m, $n)
{
    $size = max($m, $n);
    $sum = array_fill(0, $size, 0);
      
    // Initialize the porduct polynomial
    for ($i = 0; $i < $m; $i++)
        $sum[$i] = $A[$i];
      
    // Take ever term of first polynomial
    for ($i = 0; $i < $n; $i++)
        $sum[$i] += $B[$i];
      
    return $sum;
}
  
// A utility function to print a polynomial
function printPoly($poly, $n)
{
    for ($i = 0; $i < $n; $i++)
    {
        echo $poly[$i];
        if ($i != 0)
            echo "x^" . $i;
        if ($i != $n - 1)
        echo " + ";
    }
}
  
// Driver Code
  
// The following array represents
// polynomial 5 + 10x^2 + 6x^3
$A = array(5, 0, 10, 6);
  
// The following array represents 
// polynomial 1 + 2x + 4x^2
$B = array(1, 2, 4);
$m = count($A);
$n = count($B);
  
echo "First polynomial is \n";
printPoly($A, $m);
echo "\nSecond polynomial is \n";
printPoly($B, $n);
  
$sum = add($A, $B, $m, $n);
$size = max($m, $n);
  
echo "\nsum polynomial is \n";
printPoly($sum, $size);
  
// This code is contributed by chandan_jnu
?>

chevron_right



Output:

First polynomial is
5 + 0x^1 + 10x^2 + 6x^3
Second polynomial is
1 + 2x^1 + 4x^2
Sum polynomial is
6 + 2x^1 + 14x^2 + 6x^3

Time complexity of the above algorithm and program is O(m+n) where m and n are orders of two given polynomials.

This article is contributed by Harsh. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.