Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Product of nodes at k-th level in a tree represented as string using Recursion

  • Last Updated : 22 Jun, 2021

Prerequisite: Product of nodes at k-th level in a tree represented as string
Given an integer ‘K’ and a binary tree in string format. Every node of a tree has value in range from 0 to 9. We need to find product of elements at K-th level from the root. The root is at level 0.
Note: Tree is given in the form: (node value(left subtree)(right subtree))
Examples: 
 

Input: Tree = “(0(5(6()())(4()(9()())))(7(1()())(3()())))” 
k = 2 
Output: 72 
Explanation: 
Its tree representation is shown below 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.



Elements at level k = 2 are 6, 4, 1, 3 
product of these elements = 6 * 4 * 1 * 3 = 72 
Input: Tree = “(8(3(2()())(6(5()())()))(5(10()())(7(13()())())))” 
k = 3 
Output: 15 
Elements at level k = 3 are 5, 1 and 3 
product of these elements = 5 * 1 * 3 = 15 
 

 

Approach: The idea is to treat the string as a tree without actually creating one, and simply traverse the string recursively in Postorder Fashion and consider nodes which are at level k only.
Below is the implementation of above approach: 
 

C++




// C++ implementation to find product
// of elements at k-th level
 
#include <bits/stdc++.h>
using namespace std;
 
// Recursive Function to find product
// of elements at k-th level
int productAtKthLevel(string tree,
            int k, int& i, int level){
 
    if (tree[i++] == '(') {
 
        // if subtree is null,
        // just like if root == NULL
        if (tree[i] == ')')
            return 1;
 
        int product = 1;
 
        // Consider only level k node
        // to be part of the product
        if (level == k)
            product = tree[i] - '0';
 
        // Recur for Left Subtree
        int leftproduct = productAtKthLevel(
                    tree, k, ++i, level + 1);
 
        // Recur for Right Subtree
        int rightproduct = productAtKthLevel(
                tree, k, ++i, level + 1);
 
        // Taking care of ')' after
        // left and right subtree
        ++i;
        return product * leftproduct *
                       rightproduct;
    }
}
 
// Driver Code
int main()
{
    string tree = "(0(5(6()())(4()"
    "(9()())))(7(1()())(3()())))";
    int k = 2;
    int i = 0;
 
    cout << productAtKthLevel(tree, k, i, 0);
 
    return 0;
}

Java




// Java implementation to find
// product of elements at k-th level
 
class GFG {
    static int i;
 
    // Recursive Function to find product
    // of elements at k-th level
    static int productAtKthLevel(
        String tree, int k, int level){
 
        if (tree.charAt(i++) == '(') {
 
            // if subtree is null,
            // just like if root == null
            if (tree.charAt(i) == ')')
                return 1;
 
            int product = 1;
 
            // Consider only level k node
            // to be part of the product
            if (level == k)
                product = tree.charAt(i) - '0';
 
            // Recur for Left Subtree
            ++i;
            int leftproduct = productAtKthLevel(
                            tree, k, level + 1);
 
            // Recur for Right Subtree
            ++i;
            int rightproduct = productAtKthLevel(
                            tree, k, level + 1);
 
            // Taking care of ')' after
            // left and right subtree
            ++i;
            return product * leftproduct
              * rightproduct;
        }
        return Integer.MIN_VALUE;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String tree = "(0(5(6()())(4()"
        + "(9()())))(7(1()())(3()())))";
        int k = 2;
        i = 0;
        System.out.print(
            productAtKthLevel(tree, k, 0)
        );
    }
}

Python




# Python implementation to find product of
# digits of elements at k-th level
 
# Recursive Function to find product
# of elements at k-th level
def productAtKthLevel(tree, k, i, level):
     
    if(tree[i[0]]=='('):
        i[0]+= 1
        # if subtree is null,
        # just like if root == NULL
        if(tree[i[0]] == ')'):
            return 1           
         
        product = 1
        # Consider only level k node
        # to be part of the product
        if(level == k):
            product = int(tree[i[0]])
             
        # Recur for Left Subtree
        i[0]+= 1
        leftproduct = productAtKthLevel(tree,
                            k, i, level + 1)
             
        # Recur for Right Subtree
        i[0]+= 1
        rightproduct = productAtKthLevel(tree,
                            k, i, level + 1)
             
        # Taking care of ')' after left and right subtree
        i[0]+= 1
        return product * leftproduct * rightproduct        
     
# Driver Code
if __name__ == "__main__":
    tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))"
    k = 2
    i =[0]
    print(productAtKthLevel(tree, k, i, 0))

C#




// C# implementation to find product
// of elements at k-th level
 
using System;
 
class GFG {
    static int i;
 
    // Recursive Function to find product
    // of elements at k-th level
    static int productAtKthLevel(
        String tree, int k, int level){
 
        if (tree[i++] == '(') {
 
            // if subtree is null,
            // just like if root == null
            if (tree[i] == ')')
                return 1;
 
            int product = 1;
 
            // Consider only level k node
            // to be part of the product
            if (level == k)
                product = tree[i] - '0';
 
            // Recur for Left Subtree
            ++i;
            int leftproduct = productAtKthLevel(
                            tree, k, level + 1);
 
            // Recur for Right Subtree
            ++i;
            int rightproduct =
            productAtKthLevel(tree, k, level + 1);
 
            // Taking care of ')' after
            // left and right subtree
            ++i;
            return product *
              leftproduct * rightproduct;
        }
        return int.MinValue;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String tree = "(0(5(6()())(4()"
        +"(9()())))(7(1()())(3()())))";
        int k = 2;
        i = 0;
        Console.Write(productAtKthLevel(tree, k, 0));
    }
}

Javascript




<script>
 
// JavaScript implementation to find product
// of elements at k-th level
var i;
// Recursive Function to find product
// of elements at k-th level
function productAtKthLevel( tree, k, level){
    if (tree[i++] == '(') {
        // if subtree is null,
        // just like if root == null
        if (tree[i] == ')')
            return 1;
        var product = 1;
        // Consider only level k node
        // to be part of the product
        if (level == k)
            product = tree[i] - '0';
        // Recur for Left Subtree
        ++i;
        var leftproduct = productAtKthLevel(
                        tree, k, level + 1);
        // Recur for Right Subtree
        ++i;
        var rightproduct =
        productAtKthLevel(tree, k, level + 1);
        // Taking care of ')' after
        // left and right subtree
        ++i;
        return product *
          leftproduct * rightproduct;
    }
    return int.MinValue;
}
// Driver Code
var tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))";
var k = 2;
i = 0;
document.write(productAtKthLevel(tree, k, 0));
 
 
</script>
Output: 
72

 

Time Complexity: O(N)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!