# Product of nodes at k-th level in a tree represented as string using Recursion

• Last Updated : 22 Jun, 2021

Prerequisite: Product of nodes at k-th level in a tree represented as string
Given an integer ‘K’ and a binary tree in string format. Every node of a tree has value in range from 0 to 9. We need to find product of elements at K-th level from the root. The root is at level 0.
Note: Tree is given in the form: (node value(left subtree)(right subtree))
Examples:

Input: Tree = “(0(5(6()())(4()(9()())))(7(1()())(3()())))”
k = 2
Output: 72
Explanation:
Its tree representation is shown below

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students. Elements at level k = 2 are 6, 4, 1, 3
product of these elements = 6 * 4 * 1 * 3 = 72
Input: Tree = “(8(3(2()())(6(5()())()))(5(10()())(7(13()())())))”
k = 3
Output: 15
Elements at level k = 3 are 5, 1 and 3
product of these elements = 5 * 1 * 3 = 15

Approach: The idea is to treat the string as a tree without actually creating one, and simply traverse the string recursively in Postorder Fashion and consider nodes which are at level k only.
Below is the implementation of above approach:

## C++

 `// C++ implementation to find product``// of elements at k-th level` `#include ``using` `namespace` `std;` `// Recursive Function to find product``// of elements at k-th level``int` `productAtKthLevel(string tree,``            ``int` `k, ``int``& i, ``int` `level){` `    ``if` `(tree[i++] == ``'('``) {` `        ``// if subtree is null,``        ``// just like if root == NULL``        ``if` `(tree[i] == ``')'``)``            ``return` `1;` `        ``int` `product = 1;` `        ``// Consider only level k node``        ``// to be part of the product``        ``if` `(level == k)``            ``product = tree[i] - ``'0'``;` `        ``// Recur for Left Subtree``        ``int` `leftproduct = productAtKthLevel(``                    ``tree, k, ++i, level + 1);` `        ``// Recur for Right Subtree``        ``int` `rightproduct = productAtKthLevel(``                ``tree, k, ++i, level + 1);` `        ``// Taking care of ')' after``        ``// left and right subtree``        ``++i;``        ``return` `product * leftproduct *``                       ``rightproduct;``    ``}``}` `// Driver Code``int` `main()``{``    ``string tree = ``"(0(5(6()())(4()"``    ``"(9()())))(7(1()())(3()())))"``;``    ``int` `k = 2;``    ``int` `i = 0;` `    ``cout << productAtKthLevel(tree, k, i, 0);` `    ``return` `0;``}`

## Java

 `// Java implementation to find``// product of elements at k-th level` `class` `GFG {``    ``static` `int` `i;` `    ``// Recursive Function to find product``    ``// of elements at k-th level``    ``static` `int` `productAtKthLevel(``        ``String tree, ``int` `k, ``int` `level){` `        ``if` `(tree.charAt(i++) == ``'('``) {` `            ``// if subtree is null,``            ``// just like if root == null``            ``if` `(tree.charAt(i) == ``')'``)``                ``return` `1``;` `            ``int` `product = ``1``;` `            ``// Consider only level k node``            ``// to be part of the product``            ``if` `(level == k)``                ``product = tree.charAt(i) - ``'0'``;` `            ``// Recur for Left Subtree``            ``++i;``            ``int` `leftproduct = productAtKthLevel(``                            ``tree, k, level + ``1``);` `            ``// Recur for Right Subtree``            ``++i;``            ``int` `rightproduct = productAtKthLevel(``                            ``tree, k, level + ``1``);` `            ``// Taking care of ')' after``            ``// left and right subtree``            ``++i;``            ``return` `product * leftproduct``              ``* rightproduct;``        ``}``        ``return` `Integer.MIN_VALUE;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``String tree = ``"(0(5(6()())(4()"``        ``+ ``"(9()())))(7(1()())(3()())))"``;``        ``int` `k = ``2``;``        ``i = ``0``;``        ``System.out.print(``            ``productAtKthLevel(tree, k, ``0``)``        ``);``    ``}``}`

## Python

 `# Python implementation to find product of``# digits of elements at k-th level` `# Recursive Function to find product``# of elements at k-th level``def` `productAtKthLevel(tree, k, i, level):``    ` `    ``if``(tree[i[``0``]]``=``=``'('``):``        ``i[``0``]``+``=` `1``        ``# if subtree is null,``        ``# just like if root == NULL``        ``if``(tree[i[``0``]] ``=``=` `')'``):``            ``return` `1`           `        ` `        ``product ``=` `1``        ``# Consider only level k node``        ``# to be part of the product``        ``if``(level ``=``=` `k):``            ``product ``=` `int``(tree[i[``0``]])``            ` `        ``# Recur for Left Subtree``        ``i[``0``]``+``=` `1``        ``leftproduct ``=` `productAtKthLevel(tree,``                            ``k, i, level ``+` `1``)``            ` `        ``# Recur for Right Subtree``        ``i[``0``]``+``=` `1``        ``rightproduct ``=` `productAtKthLevel(tree,``                            ``k, i, level ``+` `1``)``            ` `        ``# Taking care of ')' after left and right subtree``        ``i[``0``]``+``=` `1``        ``return` `product ``*` `leftproduct ``*` `rightproduct        ``    ` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ``tree ``=` `"(0(5(6()())(4()(9()())))(7(1()())(3()())))"``    ``k ``=` `2``    ``i ``=``[``0``]``    ``print``(productAtKthLevel(tree, k, i, ``0``))`

## C#

 `// C# implementation to find product``// of elements at k-th level` `using` `System;` `class` `GFG {``    ``static` `int` `i;` `    ``// Recursive Function to find product``    ``// of elements at k-th level``    ``static` `int` `productAtKthLevel(``        ``String tree, ``int` `k, ``int` `level){` `        ``if` `(tree[i++] == ``'('``) {` `            ``// if subtree is null,``            ``// just like if root == null``            ``if` `(tree[i] == ``')'``)``                ``return` `1;` `            ``int` `product = 1;` `            ``// Consider only level k node``            ``// to be part of the product``            ``if` `(level == k)``                ``product = tree[i] - ``'0'``;` `            ``// Recur for Left Subtree``            ``++i;``            ``int` `leftproduct = productAtKthLevel(``                            ``tree, k, level + 1);` `            ``// Recur for Right Subtree``            ``++i;``            ``int` `rightproduct =``            ``productAtKthLevel(tree, k, level + 1);` `            ``// Taking care of ')' after``            ``// left and right subtree``            ``++i;``            ``return` `product *``              ``leftproduct * rightproduct;``        ``}``        ``return` `int``.MinValue;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``String tree = ``"(0(5(6()())(4()"``        ``+``"(9()())))(7(1()())(3()())))"``;``        ``int` `k = 2;``        ``i = 0;``        ``Console.Write(productAtKthLevel(tree, k, 0));``    ``}``}`

## Javascript

 ``
Output:
`72`

Time Complexity: O(N)

My Personal Notes arrow_drop_up