Skip to content
Related Articles

Related Articles

Product of all Subsequences of size K except the minimum and maximum Elements
  • Difficulty Level : Hard
  • Last Updated : 11 May, 2021

Given an array A[] containing N elements and an integer K. The task is to calculate the product of all elements of subsequences of size K except the minimum and the maximum elements for each subsequence. 
Note: Since the answer can be very large so print the final answer as mod of 109 + 7.

Examples:  

Input : arr[] = {1, 2, 3 4}, K = 3
Output : 36
Subsequences of length 3 are:
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
Excluding minimum and maximum elements from 
each of the above subsequences, product will be:
(2 * 2 * 3 * 3) = 36.

Input : arr[] = {10, 5, 16, 6}, k=3
Output : 3600 

Naive Approach: A simple approach is to generate all possible subsequences one by one and multiply all elements except maximum and minimum and further multiplying all of them. Since there will be a total of (n)C(K) subsequences all having K – 2 elements to be multiplied which is tedious work to do.

Efficient Approach: The idea is to first sort the array since it doesn’t matter if we consider subsequences or subsets.
Now count the occurrence of each element one by one.
In total, a number can occur in (n-1)C(K-1) subsequences out of which (i)C(K-1) times it will occur as maximum element and (n-i-1)C(K-1) times it will occur as a minimum element of that subsequence.
Hence, in total i^{th} element will occur: 
 

(n-1)C(K-1)  - (i)C(K-1) - (n-i-1)C(K-1) times. (let's say it x)

So, at first we’ll be calculating x for each element a[i] and then multiply a[i] x times. i.e (a[i]^x mod(10^9 + 7)  ).
Since, It’s too difficult to calculate this for large arrays, so we’ll use Fermat’s Little Theorem



Below is the implementation of the above approach: 

C++




// C++ program to find product of all
// Subsequences of size K except the
// minimum and maximum Elements
 
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
 
#define ll long long
 
#define max 101
 
// 2D array to store value of
// combinations nCr
ll C[max - 1][max - 1];
 
ll power(ll x, unsigned ll y)
{
    unsigned ll res = 1;
    x = x % MOD;
    while (y > 0) {
        if (y & 1) {
            res = (res * x) % MOD;
        }
 
        y = y >> 1;
        x = (x * x) % MOD;
    }
    return res % MOD;
}
 
// Function to pre-calculate value of all
// combinations nCr
void combi(int n, int k)
{
    int i, j;
 
    for (i = 0; i <= n; i++) {
        for (j = 0; j <= min(i, k); j++) {
            if (j == 0 || j == i)
                C[i][j] = 1;
            else
                C[i][j] = (C[i - 1][j - 1] % MOD
                            + C[i - 1][j] % MOD) % MOD;
        }
    }
}
 
// Function to calculate product of all subsequences
// except the minimum and maximum elements
unsigned ll product(ll a[], int n, int k)
{
    unsigned ll ans = 1;
 
    // Sorting array so that it becomes easy
    // to calculate the number of times an
    // element will come in first or last place
    sort(a, a + n);
     
    // An element will occur 'powa' times in total
    // of which 'powla' times it will be last element
    // and 'powfa' times it will be first element
    ll powa = C[n - 1][k - 1];
 
    for (int i = 0; i < n; i++) {
        ll powla = C[i][k - 1];
        ll powfa = C[n - i - 1][k - 1];
         
        // In total it will come
        // powe = powa-powla-powfa times
        ll powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD;
         
        // Multiplying a[i] powe times using
        // Fermat Little Theorem under MODulo
        // MOD for fast exponentiation
        unsigned ll mul = power(a[i], powe) % MOD;
        ans = ((ans % MOD) * (mul % MOD)) % MOD;
    }
     
    return ans % MOD;
}
 
// Driver Code
int main()
{
    // pre-calculation of all combinations
    combi(100, 100);
 
    ll arr[] = { 1, 2, 3, 4 };
    int n = sizeof(arr) / sizeof arr[0];
    int k = 3;
 
    unsigned ll ans = product(arr, n, k);
     
    cout << ans << endl;
 
    return 0;
}

Java




// Java program to find product of all
// Subsequences of size K except the
// minimum and maximum Elements
import java.util.Arrays;
 
class GFG
{
     
static int MOD= 1000000007;
static int max =101;
 
// 2D array to store value of
// combinations nCr
static long C[][] = new long[max ][max];
 
static long power(long x, long y)
{
    long res = 1;
    x = x % MOD;
    while (y > 0)
    {
        if (y % 2== 1)
        {
            res = (res * x) % MOD;
        }
 
        y = y >> 1;
        x = (x * x) % MOD;
    }
    return res % MOD;
}
 
// Function to pre-calculate value of all
// combinations nCr
static void combi(int n, int k)
{
    int i, j;
 
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= Math.min(i, k); j++)
        {
            if (j == 0 || j == i)
                C[i][j] = 1;
            else
                C[i][j] = (C[i - 1][j - 1] % MOD
                            + C[i - 1][j] % MOD) % MOD;
        }
    }
}
 
// Function to calculate product of all subsequences
// except the minimum and maximum elements
static long product(long a[], int n, int k)
{
    long ans = 1;
 
    // Sorting array so that it becomes easy
    // to calculate the number of times an
    // element will come in first or last place
    Arrays.sort(a);
     
    // An element will occur 'powa' times in total
    // of which 'powla' times it will be last element
    // and 'powfa' times it will be first element
    long powa = C[n - 1][k - 1];
 
    for (int i = 0; i < n; i++)
    {
        long powla = C[i][k - 1];
        long powfa = C[n - i - 1][k - 1];
         
        // In total it will come
        // powe = powa-powla-powfa times
        long powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD;
         
        // Multiplying a[i] powe times using
        // Fermat Little Theorem under MODulo
        // MOD for fast exponentiation
        long mul = power(a[i], powe) % MOD;
        ans = ((ans % MOD) * (mul % MOD)) % MOD;
    }
     
    return ans % MOD;
}
 
// Driver Code
public static void main(String[] args)
{
    // pre-calculation of all combinations
    combi(100, 100);
 
    long arr[] = { 1, 2, 3, 4 };
    int n = arr.length;
    int k = 3;
 
    long ans = product(arr, n, k);
     
    System.out.println(ans);
}
}
 
/* This code contributed by PrinciRaj1992 */

Python3




# Python 3 program to find product of all
# Subsequences of size K except the
# minimum and maximum Elements
 
MOD = 1000000007
 
max = 101
 
# 2D array to store value of
# combinations nCr
C = [[0 for i in range(max)] for j in range(max)]
 
def power(x,y):
    res = 1
    x = x % MOD
    while (y > 0):
        if (y & 1):
            res = (res * x) % MOD
 
        y = y >> 1
        x = (x * x) % MOD
 
    return res % MOD
 
# Function to pre-calculate value of all
# combinations nCr
def combi(n, k):
    for i in range(n + 1):
        for j in range(min(i, k) + 1):
            if (j == 0 or j == i):
                C[i][j] = 1
            else:
                C[i][j] = (C[i - 1][j - 1] % MOD +
                            C[i - 1][j] % MOD) % MOD
 
# Function to calculate product of all subsequences
# except the minimum and maximum elements
def product(a, n, k):
    ans = 1
 
    # Sorting array so that it becomes easy
    # to calculate the number of times an
    # element will come in first or last place
    a.sort(reverse = False)
     
    # An element will occur 'powa' times in total
    # of which 'powla' times it will be last element
    # and 'powfa' times it will be first element
    powa = C[n - 1][k - 1]
 
    for i in range(n):
        powla = C[i][k - 1]
        powfa = C[n - i - 1][k - 1]
         
        # In total it will come
        # powe = powa-powla-powfa times
        powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD
         
        # Multiplying a[i] powe times using
        # Fermat Little Theorem under MODulo
        # MOD for fast exponentiation
        mul = power(a[i], powe) % MOD
        ans = ((ans % MOD) * (mul % MOD)) % MOD
     
    return ans % MOD
 
# Driver Code
if __name__ == '__main__':
    # pre-calculation of all combinations
    combi(100, 100)
 
    arr = [1, 2, 3, 4]
    n = len(arr)
    k = 3
 
    ans = product(arr, n, k)
    print(ans)
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# program to find product of all
// Subsequences of size K except the
// minimum and maximum Elements
using System;
 
class GFG
{
static int MOD = 1000000007;
static int max = 101;
 
// 2D array to store value of
// combinations nCr
static long [,]C = new long[max, max];
 
static long power(long x, long y)
{
    long res = 1;
    x = x % MOD;
    while (y > 0)
    {
        if (y % 2 == 1)
        {
            res = (res * x) % MOD;
        }
 
        y = y >> 1;
        x = (x * x) % MOD;
    }
    return res % MOD;
}
 
// Function to pre-calculate value
// of all combinations nCr
static void combi(int n, int k)
{
    int i, j;
 
    for (i = 0; i <= n; i++)
    {
        for (j = 0;
             j <= Math.Min(i, k); j++)
        {
            if (j == 0 || j == i)
                C[i, j] = 1;
            else
                C[i, j] = (C[i - 1, j - 1] % MOD +
                           C[i - 1, j] % MOD) % MOD;
        }
    }
}
 
// Function to calculate product of
// all subsequences except
// the minimum and maximum elements
static long product(long []a, int n, int k)
{
    long ans = 1;
 
    // Sorting array so that it becomes easy
    // to calculate the number of times an
    // element will come in first or last place
    Array.Sort(a);
     
    // An element will occur 'powa' times
    // in total of which 'powla' times it
    // will be last element and 'powfa' times
    // it will be first element
    long powa = C[n - 1, k - 1];
 
    for (int i = 0; i < n; i++)
    {
        long powla = C[i, k - 1];
        long powfa = C[n - i - 1, k - 1];
         
        // In total it will come
        // powe = powa-powla-powfa times
        long powe = ((powa % MOD) -    
                     (powla + powfa) %
                      MOD + MOD) % MOD;
         
        // Multiplying a[i] powe times using
        // Fermat Little Theorem under MODulo
        // MOD for fast exponentiation
        long mul = power(a[i], powe) % MOD;
        ans = ((ans % MOD) *
               (mul % MOD)) % MOD;
    }
     
    return ans % MOD;
}
 
// Driver Code
static public void Main ()
{
    // pre-calculation of all combinations
    combi(100, 100);
 
    long []arr = { 1, 2, 3, 4 };
    int n = arr.Length;
    int k = 3;
 
    long ans = product(arr, n, k);
     
    Console.WriteLine(ans);
}
}
 
// This code contributed by ajit

Javascript




<script>
    // Javascript program to find product of all
    // Subsequences of size K except the
    // minimum and maximum Elements
     
    let MOD= 1000000007;
    let max =101;
 
    // 2D array to store value of
    // combinations nCr
    let C = new Array(max);
     
    for(let i = 0; i < max; i++)
    {
        C[i] = new Array(max);
        for(let j = 0; j < max; j++)
        {
            C[i][j] = 0;
        }
    }
 
    function power(x, y)
    {
        let res = 1;
        x = x % MOD;
        while (y > 0)
        {
            if (y % 2== 1)
            {
                res = (res * x) % MOD;
            }
 
            y = y >> 1;
            x = (x * x) % MOD;
        }
        return res % MOD;
    }
 
    // Function to pre-calculate value of all
    // combinations nCr
    function combi(n, k)
    {
        let i, j;
 
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= Math.min(i, k); j++)
            {
                if (j == 0 || j == i)
                    C[i][j] = 1;
                else
                    C[i][j] = (C[i - 1][j - 1] % MOD
                                + C[i - 1][j] % MOD) % MOD;
            }
        }
    }
 
    // Function to calculate product of all subsequences
    // except the minimum and maximum elements
    function product(a, n, k)
    {
        let ans = 1;
 
        // Sorting array so that it becomes easy
        // to calculate the number of times an
        // element will come in first or last place
        a.sort(function(a, b){return a - b});
 
        // An element will occur 'powa' times in total
        // of which 'powla' times it will be last element
        // and 'powfa' times it will be first element
        let powa = C[n - 1][k - 1];
 
        for (let i = 0; i < n; i++)
        {
            let powla = C[i][k - 1];
            let powfa = C[n - i - 1][k - 1];
 
            // In total it will come
            // powe = powa-powla-powfa times
            let powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD;
 
            // Multiplying a[i] powe times using
            // Fermat Little Theorem under MODulo
            // MOD for fast exponentiation
            let mul = power(a[i], powe) % MOD;
            ans = ((ans % MOD) * (mul % MOD)) % MOD;
        }
 
        return ans % MOD;
    }
     
    // pre-calculation of all combinations
    combi(100, 100);
   
    let arr = [ 1, 2, 3, 4 ];
    let n = arr.length;
    let k = 3;
   
    let ans = product(arr, n, k);
       
    document.write(ans);
 
</script>
Output: 
36

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :