Product of all nodes in a Binary Tree

Given a Binary Tree. The task is to write a program to find the product of all of the nodes of the given binary tree.

In the above binary tree,
Product = 15*10*20*812*16*25 = 974400000

The idea is to recursively:

  • Find product of left subtree.
  • Find product of right subtree.
  • Mutiply the product of left and right subtrees with current node’s data and return.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to print product of all
// the nodes of a binary tree
#include <iostream>
using namespace std;
  
// Binary Tree Node
struct Node {
    int key;
    Node *left, *right;
};
  
/* utility that allocates a new Node 
   with the given key */
Node* newNode(int key)
{
    Node* node = new Node;
    node->key = key;
    node->left = node->right = NULL;
    return (node);
}
  
// Function to find product of
// all the nodes
int productBT(Node* root)
{
    if (root == NULL)
        return 1;
  
    return (root->key * productBT(root->left) * productBT(root->right));
}
  
// Driver Code
int main()
{
    // Binary Tree is:
    //       1
    //      /  \
    //     2    3
    //    / \  / \
    //   4   5 6  7
    //          \
    //           8
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->right->left->right = newNode(8);
  
    int prod = productBT(root);
  
    cout << "Product of all the nodes is: "
         << prod << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

    
// Java Program to print product of all
// the nodes of a binary tree 
import java.util.*;
class solution
{
  
// Binary Tree Node
static class Node {
    int key;
    Node left, right;
};
  
/* utility that allocates a new Node 
   with the given key */
static Node newNode(int key)
{
    Node node = new Node();
    node.key = key;
    node.left = node.right = null;
    return (node);
}
  
// Function to find product of
// all the nodes
static int productBT(Node root)
{
    if (root == null)
        return 1;
  
    return (root.key * productBT(root.left) * productBT(root.right));
}
  
// Driver Code
public static void main(String args[])
{
    // Binary Tree is:
    //       1
    //      /  \
    //     2    3
    //    / \  / \
    //   4   5 6  7
    //          \
    //           8
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.right.left.right = newNode(8);
  
    int prod = productBT(root);
  
    System.out.println( "Product of all the nodes is: "+prod);
  
}
}
//contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to print product of 
# all the nodes of a binary tree 
  
# Binary Tree Node 
  
""" utility that allocates a new Node 
with the given key """
class newNode: 
  
    # Construct to create a new node 
    def __init__(self, key): 
        self.key = key
        self.left = None
        self.right = None
          
# Function to find product of 
# all the nodes 
def productBT( root) :
  
    if (root == None):
        return 1
  
    return (root.key * productBT(root.left) * 
                       productBT(root.right)) 
  
# Driver Code 
if __name__ == '__main__':
      
    # Binary Tree is: 
    #     1 
    #     / \ 
    #     2 3 
    # / \ / \ 
    # 4 5 6 7 
    #         \ 
    #         8 
    root = newNode(1
    root.left = newNode(2
    root.right = newNode(3
    root.left.left = newNode(4
    root.left.right = newNode(5
    root.right.left = newNode(6
    root.right.right = newNode(7
    root.right.left.right = newNode(8
  
    prod = productBT(root) 
  
    print("Product of all the nodes is:", prod)
      
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to print product of all
// the nodes of a binary tree 
using System;
  
class GFG
{
  
    // Binary Tree Node
    class Node
    {
        public int key;
        public Node left, right;
    };
  
    /* utility that allocates a new Node 
    with the given key */
    static Node newNode(int key)
    {
        Node node = new Node();
        node.key = key;
        node.left = node.right = null;
        return (node);
    }
  
    // Function to find product of
    // all the nodes
    static int productBT(Node root)
    {
        if (root == null)
            return 1;
  
        return (root.key * productBT(root.left) *
                        productBT(root.right));
    }
  
    // Driver Code
    public static void Main()
    {
        // Binary Tree is:
        //   1
        //   / \
        //   2 3
        // / \ / \
        // 4 5 6 7
        //       \
        //       8
        Node root = newNode(1);
        root.left = newNode(2);
        root.right = newNode(3);
        root.left.left = newNode(4);
        root.left.right = newNode(5);
        root.right.left = newNode(6);
        root.right.right = newNode(7);
        root.right.left.right = newNode(8);
  
        int prod = productBT(root);
  
        Console.WriteLine( "Product of all " +
                        "the nodes is: " + prod);
    }
}
  
/* This code is contributed PrinciRaj1992 */

chevron_right



Output:

Product of all the nodes is: 40320

Time complexity : O(n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.