# Probability of getting K heads in N coin tosses

Given two integers N and R. The task is to calculate the probability of getting exactly r heads in n successive tosses.

A fair coin has an equal probability of landing a head or a tail on each toss.

Examples:

Input : N = 1, R = 1
Output : 0.500000

Input : N = 4, R = 3
Output : 0.250000


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach
Probability of getting K heads in N coin tosses can be calculated using below formula: Below is the implementation of the above approach:

## C++

 #include  using namespace std;     // function to calculate factorial  int fact(int n)  {      int res = 1;      for (int i = 2; i <= n; i++)          res = res * i;      return res;  }     // apply the formula  double count_heads(int n, int r)  {      double output;      output = fact(n) / (fact(r) * fact(n - r));      output = output / (pow(2, n));      return output;  }     // Driver function  int main()  {      int n = 4, r = 3;             // call count_heads with n and r      cout << count_heads(n, r);      return 0;  }

## Java

 class GFG{      // function to calculate factorial  static int fact(int n)  {      int res = 1;      for (int i = 2; i <= n; i++)          res = res * i;      return res;  }      // apply the formula  static double count_heads(int n, int r)  {      double output;      output = fact(n) / (fact(r) * fact(n - r));      output = output / (Math.pow(2, n));      return output;  }      // Driver function  public static void main(String[] args)  {      int n = 4, r = 3;              // call count_heads with n and r      System.out.print(count_heads(n, r));  }  }     // This code is contributed by 29AjayKumar

## Python3

 # Python3 program to find probability   # of getting K heads in N coin tosses     # Function to calculate factorial   def fact(n):             res = 1     for i in range(2, n + 1):           res = res * i      return res     # Applying the formula   def count_heads(n, r):             output = fact(n) / (fact(r) * fact(n - r))      output = output / (pow(2, n))      return output     # Driver code  n = 4 r = 3    # Call count_heads with n and r  print (count_heads(n, r))     # This code is contributed by Pratik Basu

## C#

 using System;     public class GFG{       // Function to calculate factorial  static int fact(int n)  {      int res = 1;      for (int i = 2; i <= n; i++)          res = res * i;      return res;  }       // Apply the formula  static double count_heads(int n, int r)  {      double output;      output = fact(n) / (fact(r) * fact(n - r));      output = output / (Math.Pow(2, n));      return output;  }       // Driver function  public static void Main(String[] args)  {      int n = 4, r = 3;               // Call count_heads with n and r      Console.Write(count_heads(n, r));  }  }  // This code contributed by sapnasingh4991

Output:

0.250000


Time Complexity: In this implementation, we have to calculate factorial based on the value n, so time complexity would be O(n)
Auxiliary Space: In this implementation, we are not using any extra space, so auxiliary space required is O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.