Skip to content
Related Articles
Probability of getting a sum on throwing 2 Dices N times
• Last Updated : 14 Apr, 2021

Given the sum. The task is to find out the probability of occurring that sum on the thrown of the two dice N times.
Probability is defined as the favorable numbers of outcomes upon total numbers of the outcome. Probability always lies between 0 and 1.
Examples:

```Input: sum = 11, times = 1
Output: 2 / 36
favorable outcomes = (5, 6) and (6, 5) i.e 2
Total outcomes = (1, 1), (1, 2), (1, 3)...(6, 6) i.e 36
Probability = (2 / 36)

Input: sum = 7, times = 7
Output: 1 / 279936```

Formula:-

The probability of occurring sum on throwing 2 dices N times = (favorable/total) ^ N

Approach:-

First of All, Calculates the probability of Occurring that sum on thrown of 2 dice 1 times.
Let say it Probability1.
Now, to calculate the Probability of occurring that sum on thrown of 2 dice N times be:
Probability2 = (Probability1) ^ N. i.e Probability1 raise to power N

Below is the implementation of above approach:

## C++

 `// C++ implementation of above approach``#include ``using` `namespace` `std;` `// function that calculates Probability.``int` `Probability(``int` `sum, ``int` `times)``{` `    ``float` `favorable = 0.0, total = 36.0;``    ``long` `int` `probability = 0;` `    ``// To calculate favorable outcomes``    ``// in thrown of 2 dices 1 times.``    ``for` `(``int` `i = 1; i <= 6; i++) {``        ``for` `(``int` `j = 1; j <= 6; j++) {``            ``if` `((i + j) == sum)``                ``favorable++;``        ``}``    ``}` `    ``int` `gcd1 = __gcd((``int``)favorable, (``int``)total);` `    ``// Reduce to simplest Form.``    ``favorable = favorable / (``float``)gcd1;``    ``total = total / (``float``)gcd1;` `    ``// Probability of occurring sum on 2 dice N times.``    ``probability = ``pow``(total, times);` `    ``return` `probability;``}` `// Driver Code``int` `main()``{``    ``int` `sum = 7, times = 7;` `    ``cout << ``"1"``         ``<< ``"/"` `<< Probability(sum, times);``    ``return` `0;``}`

## Java

 `// Java implementation of above approach``import` `java.io.*;` `class` `GFG``{``// Recursive function to return``// gcd of a and b``static` `int` `__gcd(``int` `a, ``int` `b)``{``    ``// Everything divides 0``    ``if` `(a == ``0``)``    ``return` `b;``    ``if` `(b == ``0``)``    ``return` `a;``    ` `    ``// base case``    ``if` `(a == b)``        ``return` `a;``    ` `    ``// a is greater``    ``if` `(a > b)``        ``return` `__gcd(a - b, b);``    ``return` `__gcd(a, b - a);``}` `// function that calculates``// Probability.``static` `long` `Probability(``int` `sum,``                        ``int` `times)``{` `    ``float` `favorable = ``0``, total = ``36``;``    ``long` `probability = ``0``;` `    ``// To calculate favorable outcomes``    ``// in thrown of 2 dices 1 times.``    ``for` `(``int` `i = ``1``; i <= ``6``; i++)``    ``{``        ``for` `(``int` `j = ``1``; j <= ``6``; j++)``        ``{``            ``if` `((i + j) == sum)``                ``favorable++;``        ``}``    ``}` `    ``int` `gcd1 = __gcd((``int``)favorable,``                     ``(``int``)total);` `    ``// Reduce to simplest Form.``    ``favorable = favorable / (``float``)gcd1;``    ``total = total / (``float``)gcd1;` `    ``// Probability of occurring``    ``// sum on 2 dice N times.``    ``probability = (``long``)Math.pow(total, times);` `    ``return` `probability;``}` `// Driver Code``public` `static` `void` `main (String[] args)``{``    ``int` `sum = ``7``, times = ``7``;``    ` `    ``System.out.println( ``"1"` `+ ``"/"` `+``          ``Probability(sum, times));``}``}` `// This code is contributed``// by inder_verma`

## Python 3

 `# Python 3 implementation of above approach` `# from math import everything``from` `math ``import` `*` `# function that calculates Probability.``def` `Probability(``sum``, times) :``    ``favorable, total, probability ``=` `0.0``, ``36.0``, ``0` `    ``# To calculate favorable outcomes``    ``# in thrown of 2 dices 1 times.``    ``for` `i ``in` `range``(``7``) :``        ``for` `j ``in` `range``(``7``) :``            ``if` `((i ``+` `j) ``=``=` `sum``) :``                ``favorable ``+``=` `1` `    ``gcd1 ``=` `gcd(``int``(favorable), ``int``(total))` `    ``# Reduce to simplest Form.``    ``favorable ``=` `favorable ``/` `gcd1``    ``total ``=` `total ``/` `gcd1` `    ``# Probability of occurring sum on 2 dice N times.``    ``probability ``=` `pow``(total, times)` `    ``return` `int``(probability)`  `# Driver Code``if` `__name__ ``=``=` `"__main__"` `:` `    ``sum``, times ``=` `7``, ``7` `    ``print``(``"1"``,``"/"``,Probability(``sum``, times))`  `# This code is contributed by ANKITRAI1`

## C#

 `// C# implementation of above approach` `class` `GFG``{``// Recursive function to return``// gcd of a and b``static` `int` `__gcd(``int` `a, ``int` `b)``{``    ``// Everything divides 0``    ``if` `(a == 0)``    ``return` `b;``    ``if` `(b == 0)``    ``return` `a;``    ` `    ``// base case``    ``if` `(a == b)``        ``return` `a;``    ` `    ``// a is greater``    ``if` `(a > b)``        ``return` `__gcd(a - b, b);``    ``return` `__gcd(a, b - a);``}` `// function that calculates``// Probability.``static` `long` `Probability(``int` `sum,``                        ``int` `times)``{` `    ``float` `favorable = 0, total = 36;``    ``long` `probability = 0;` `    ``// To calculate favorable outcomes``    ``// in thrown of 2 dices 1 times.``    ``for` `(``int` `i = 1; i <= 6; i++)``    ``{``        ``for` `(``int` `j = 1; j <= 6; j++)``        ``{``            ``if` `((i + j) == sum)``                ``favorable++;``        ``}``    ``}` `    ``int` `gcd1 = __gcd((``int``)favorable,``                    ``(``int``)total);` `    ``// Reduce to simplest Form.``    ``favorable = favorable / (``float``)gcd1;``    ``total = total / (``float``)gcd1;` `    ``// Probability of occurring``    ``// sum on 2 dice N times.``    ``probability = (``long``)System.Math.Pow(total, times);` `    ``return` `probability;``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `sum = 7, times = 7;``    ` `    ``System.Console.WriteLine( ``"1"` `+ ``"/"` `+``        ``Probability(sum, times));``}``}` `// This code is contributed``// by mits`

## PHP

 ``

## Javascript

 ``
Output:
`1/279936`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up