Skip to content
Related Articles

Related Articles

Privacy, security and social impacts of Data Mining

Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 13 Sep, 2021
Improve Article
Save Article

Data Mining is to intelligently discover useful information from large amounts of data to solve real-life problems. It is a combination of two words: data and mining. Data is a collection of instances, and mining is designed to filter useful information. Data mining, called knowledge discovery in databases (KDD), is responsible for analyzing data from different perspectives and classifying them. There are many data mining techniques used to transform raw data into useful data. It has various applications such as detecting anomalous behavior, detecting fraud and abuse, terrorist activities, and investigating crimes through lie detection. Data mining can offer many benefits by improving customer service and satisfaction, and lifestyle, in general. Data mining is present in many aspects of our daily lives, whether we realize it or not. It affects how we shop, work, what we search.

Importance of data mining:

  • It helps in exploring the large increase in the database and gather only valid information by improving segmentation.
  • It’s an efficient, cost-effective solution by uncovering the risk and fraud that makes profitable production.
  • Sometimes customers having difficulty while purchasing helps in decision making and increases the sale.
  • Data mining techniques can help organizations in real-time plan and save time.
  • Also, saved money through fraud detection.

 Application area of data mining:

  • Future Healthcare
  • Market Basket Analysis
  • Manufacturing Engineering
  • Fraud Detection
  • Intrusion Detection
  • Customer Segmentation
  • Financial Banking

Data mining architecture:

Data mining architecture unveils how data extraction falls out. The architecture consists of various steps i.e Data source, data mining engine, data warehouse server, pattern evaluation, user interface, and knowledge base. 

How data mining influences privacy, security, and socially:

Security and privacy have been an initial concern all the time.  It aimed at future predictions using previous data. Suppose we buy any product so based on past purchases they make predictions and which also target our personal information. The continuous development of data mining techniques brings serious threats to data security and privacy which is very important to protect. The real threat is that if information gets exposed to unauthorized parties, it will be impractical to stop misuse. Therefore, we must need a system that possesses to protect data and its resources concerning authenticity and integrity.

How we can protect our data:

  • Due to minimal protection setup, we lose data so we need to  initiate a multilayer security system
  • Access Controls are only given to those who have been given the authorization  can access the data
  • Data must verify an individual user’s identity

So, some privacy preservation methods protect sensitive or private data while allowing useful information to be extracted from the data set. 

  • Privacy-Preserving Data Mining (PPDM): The main objective of the PPDM is to protect the privacy of the data and extract only relevant information. It ensures the protection of individual data to conserve privacy and provide accuracy by performing all the data mining operations.

Techniques of PPDM is further divided into various categories:

  • Data Hiding Technique: In, this technique the data is reform in such a way that the sensitive or private information will not be visible to other parties. Using various ways we can implement these techniques such as Cryptographic Technique, Data Perturbation, and Anonymization Technique.
  • Knowledge hiding Technique: In this technique, sensitive content is extracted from data using a data mining algorithm. There are different ways of implementing these techniques such as Association Rule Hiding, and Query Auditing.
  • Hybrid Technique: It is a combination of the two techniques which infuse the limitations of the above two techniques.

Social Impacts of Data Mining:

Data mining has innovatively influenced our daily lifestyle like how we work, shop, what we buy, search for any information, importantly saves our precious time and offers personalized product recommendations based on our previous history like amazon, Flipkart, etc.

Data mining emerging in all fields like Healthcare, Finance, Marketing, and social media. But there is a higher contribution towards healthcare and well-being by using data mining software to analyze data when developing drugs and to find associations between patients, drugs, and outcomes. And improving patient satisfaction, providing more patient-centered care, and decreasing costs, and increase operating efficiency and Insurance organizations can detect medical insurance fraud and abuse through data mining and reduce their losses.

An old payment system has now taken different forms of transactions depending on usage, acceptability, methods, technology, and availability. It changes the physical financial transactions to virtual payment transactions. So, data mining focuses on successful transactions and keeps track of fake transactions.

It is also used in Web-wide tracking technology that tracks user’s interests while visiting any site. So, information about every site is been recorded, which can be used further to provide marketers with information reflecting your interests.

It is also used for customer relationship management which helps in providing more customized, personal service to individual customers. By studying browsing and purchasing history on Web stores, companies can tailor advertisements and promotions to customer profiles,  only those who are interested and less likely to be annoyed with unwanted mailings. This helps in reducing costs, the waste of time, and improving work productivity.

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!