# Printing longest Increasing consecutive subsequence

Given n elements, write a program that prints the longest increasing subsequence whose adjacent element difference is one.

Examples:

Input : a[] = {3, 10, 3, 11, 4, 5, 6, 7, 8, 12}
Output : 3 4 5 6 7 8
Explanation: 3, 4, 5, 6, 7, 8 is the longest increasing subsequence whose adjacent element differs by one.

Input : a[] = {6, 7, 8, 3, 4, 5, 9, 10}
Output : 6 7 8 9 10
Explanation: 6, 7, 8, 9, 10 is the longest increasing subsequence

We have discussed how to find length of Longest Increasing consecutive subsequence. To print the subsequence, we store index of last element. Then we print consecutive elements ending with last element.

Given below is the implementation of the above approach:

## C++

 `// CPP program to find length of the` `// longest increasing subsequence` `// whose adjacent element differ by 1` `#include ` `using` `namespace` `std;`   `// function that returns the length of the` `// longest increasing subsequence` `// whose adjacent element differ by 1` `void` `longestSubsequence(``int` `a[], ``int` `n)` `{` `    ``// stores the index of elements` `    ``unordered_map<``int``, ``int``> mp;`   `    ``// stores the length of the longest` `    ``// subsequence that ends with a[i]` `    ``int` `dp[n];` `    ``memset``(dp, 0, ``sizeof``(dp));`   `    ``int` `maximum = INT_MIN;`   `    ``// iterate for all element` `    ``int` `index = -1;` `    ``for` `(``int` `i = 0; i < n; i++) {`   `        ``// if a[i]-1 is present before i-th index` `        ``if` `(mp.find(a[i] - 1) != mp.end()) {`   `            ``// last index of a[i]-1` `            ``int` `lastIndex = mp[a[i] - 1] - 1;`   `            ``// relation` `            ``dp[i] = 1 + dp[lastIndex];` `        ``}` `        ``else` `            ``dp[i] = 1;`   `        ``// stores the index as 1-index as we need to` `        ``// check for occurrence, hence 0-th index` `        ``// will not be possible to check` `        ``mp[a[i]] = i + 1;`   `        ``// stores the longest length` `        ``if` `(maximum < dp[i]) {` `            ``maximum = dp[i];` `            ``index = i;` `        ``}` `    ``}`   `    ``// We know last element of sequence is` `    ``// a[index]. We also know that length` `    ``// of subsequence is "maximum". So We` `    ``// print these many consecutive elements` `    ``// starting from "a[index] - maximum + 1"` `    ``// to a[index].` `    ``for` `(``int` `curr = a[index] - maximum + 1;` `         ``curr <= a[index]; curr++)` `        ``cout << curr << ``" "``;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `a[] = { 3, 10, 3, 11, 4, 5, 6, 7, 8, 12 };` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a[0]);` `    ``longestSubsequence(a, n);` `    ``return` `0;` `}`

## Java

 `// Java program to find length of the` `// longest increasing subsequence` `// whose adjacent element differ by ` `import` `java.util.HashMap;`   `class` `GFG` `{`   `    ``// function that returns the length of the` `    ``// longest increasing subsequence` `    ``// whose adjacent element differ by 1` `    ``public` `static` `void` `longestSubsequence(``int``[] a,` `                                          ``int` `n) ` `    ``{`   `        ``// stores the index of elements` `        ``HashMap mp = ``new` `HashMap<>();`   `        ``// stores the length of the longest` `        ``// subsequence that ends with a[i]` `        ``int``[] dp = ``new` `int``[n];`   `        ``int` `maximum = Integer.MIN_VALUE;`   `        ``// iterate for all element` `        ``int` `index = -``1``;` `        ``for``(``int` `i = ``0``; i < n; i++)` `        ``{`   `            ``// if a[i]-1 is present before i-th index` `            ``if` `(mp.get(a[i] - ``1``) != ``null``)` `            ``{`   `                ``// last index of a[i]-1` `                ``int` `lastIndex = mp.get(a[i] - ``1``) - ``1``;`   `                ``// relation` `                ``dp[i] = ``1` `+ dp[lastIndex];` `            ``}` `            ``else` `                ``dp[i] = ``1``;` `            `  `            ``// stores the index as 1-index as we need to` `            ``// check for occurrence, hence 0-th index` `            ``// will not be possible to check` `            ``mp.put(a[i], i +  ``1``);`   `            ``// stores the longest length` `            ``if` `(maximum < dp[i])` `            ``{` `                ``maximum = dp[i];` `                ``index = i;` `            ``}` `        ``}`   `        ``// We know last element of sequence is` `        ``// a[index]. We also know that length` `        ``// of subsequence is "maximum". So We` `        ``// print these many consecutive elements` `        ``// starting from "a[index] - maximum + 1"` `        ``// to a[index].` `        ``for` `(``int` `curr = a[index] - maximum + ``1``;` `            ``curr <= a[index]; curr++)` `            ``System.out.print(curr + ``" "``);` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `main(String[] args) ` `    ``{` `        ``int``[] a = { ``3``, ``10``, ``3``, ``11``, ``4``, ` `                    ``5``, ``6``, ``7``, ``8``, ``12` `};` `        ``int` `n = a.length;` `        ``longestSubsequence(a, n);` `    ``}` `}`   `// This code is contributed by sanjeev2552`

## Python3

 `# Python 3 program to find length of ` `# the longest increasing subsequence` `# whose adjacent element differ by 1` `import` `sys`   `# function that returns the length ` `# of the longest increasing subsequence` `# whose adjacent element differ by 1` `def` `longestSubsequence(a, n):` `    `  `    ``# stores the index of elements` `    ``mp ``=` `{i:``0` `for` `i ``in` `range``(``13``)}`   `    ``# stores the length of the longest` `    ``# subsequence that ends with a[i]` `    ``dp ``=` `[``0` `for` `i ``in` `range``(n)]`   `    ``maximum ``=` `-``sys.maxsize ``-` `1`   `    ``# iterate for all element` `    ``index ``=` `-``1` `    ``for` `i ``in` `range``(n):` `        `  `        ``# if a[i]-1 is present before` `        ``# i-th index` `        ``if` `((a[i] ``-` `1` `) ``in` `mp):` `            `  `            ``# last index of a[i]-1` `            ``lastIndex ``=` `mp[a[i] ``-` `1``] ``-` `1`   `            ``# relation` `            ``dp[i] ``=` `1` `+` `dp[lastIndex]` `        ``else``:` `            ``dp[i] ``=` `1`   `        ``# stores the index as 1-index as we ` `        ``# need to check for occurrence, hence ` `        ``# 0-th index will not be possible to check` `        ``mp[a[i]] ``=` `i ``+` `1`   `        ``# stores the longest length` `        ``if` `(maximum < dp[i]):` `            ``maximum ``=` `dp[i]` `            ``index ``=` `i`   `    ``# We know last element of sequence is` `    ``# a[index]. We also know that length` `    ``# of subsequence is "maximum". So We` `    ``# print these many consecutive elements` `    ``# starting from "a[index] - maximum + 1"` `    ``# to a[index].` `    ``for` `curr ``in` `range``(a[index] ``-` `maximum ``+` `1``, ` `                      ``a[index] ``+` `1``, ``1``):` `        ``print``(curr, end ``=` `" "``)`   `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `    ``a ``=` `[``3``, ``10``, ``3``, ``11``, ``4``, ``5``, ` `                ``6``, ``7``, ``8``, ``12``]` `    ``n ``=` `len``(a)` `    ``longestSubsequence(a, n)`   `# This code is contributed by` `# Surendra_Gangwar`

## C#

 `// C# program to find length of the` `// longest increasing subsequence` `// whose adjacent element differ by ` `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG` `{`   `    ``// function that returns the length of the` `    ``// longest increasing subsequence` `    ``// whose adjacent element differ by 1` `    ``static` `void` `longestSubsequence(``int``[] a, ``int` `n) ` `    ``{`   `        ``// stores the index of elements` `        ``Dictionary<``int``, ` `                   ``int``> mp = ``new` `Dictionary<``int``, ` `                                            ``int``>();`   `        ``// stores the length of the longest` `        ``// subsequence that ends with a[i]` `        ``int``[] dp = ``new` `int``[n];`   `        ``int` `maximum = -100000000;`   `        ``// iterate for all element` `        ``int` `index = -1;` `        ``for``(``int` `i = 0; i < n; i++)` `        ``{`   `            ``// if a[i]-1 is present before i-th index` `            ``if` `(mp.ContainsKey(a[i] - 1) == ``true``)` `            ``{`   `                ``// last index of a[i]-1` `                ``int` `lastIndex = mp[a[i] - 1] - 1;`   `                ``// relation` `                ``dp[i] = 1 + dp[lastIndex];` `            ``}` `            ``else` `                ``dp[i] = 1;` `            `  `            ``// stores the index as 1-index as we need to` `            ``// check for occurrence, hence 0-th index` `            ``// will not be possible to check` `            ``mp[a[i]] = i + 1;`   `            ``// stores the longest length` `            ``if` `(maximum < dp[i])` `            ``{` `                ``maximum = dp[i];` `                ``index = i;` `            ``}` `        ``}`   `        ``// We know last element of sequence is` `        ``// a[index]. We also know that length` `        ``// of subsequence is "maximum". So We` `        ``// print these many consecutive elements` `        ``// starting from "a[index] - maximum + 1"` `        ``// to a[index].` `        ``for` `(``int` `curr = a[index] - maximum + 1;` `            ``curr <= a[index]; curr++)` `            ``Console.Write(curr + ``" "``);` `    ``}`   `    ``// Driver Code` `    ``static` `void` `Main() ` `    ``{` `        ``int``[] a = { 3, 10, 3, 11, 4, ` `                    ``5, 6, 7, 8, 12 };` `        ``int` `n = a.Length;` `        ``longestSubsequence(a, n);` `    ``}` `}`   `// This code is contributed by mohit kumar`

## Javascript

 ``

Output

`3 4 5 6 7 8 `

Complexity Analysis:

• Time Complexity: O(n), as we are using a loop to traverse n times and in each traversal.
• Auxiliary Space: O(n), as we are using extra space for dp and mp.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next