# Permutation of Array such that products of all adjacent elements are even

Given an array **arr[]** consisting of **N** positive integers, the task is to find any permutation of given array such that the product of adjacent elements is even. Print any such permutation or -1 if not possible.

**Example:**

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.

Input:arr[] = {6,7,9,8,10,11}Output:8 9 10 7 6 11Explanation:

Product of adjacent elements =>

8 x 9 = 72 (even)

9 x 10 = 90 (even)

10 x 7 = 70 (even)

7 x 6 = 42 (even)

6 x 11 = 66 (even)

Input:arr[] = {3,2,5,7,1,4,9}Output: -1Explanation:There is no possible arrangements of elements such that product of adjacent elements is equal.

**Naive Approach:** The simplest approach to solve this problem is to try every possible arrangement of the elements and check the condition to be true.

**Time Complexity:** O(N*N!) where N is the number of elements in the array. O(N!) is the time taken to create all permutations of the given array and O(N) is the time required to check if the current permutation is the required one or not.**Auxiliary Space:** O(N) to store the permutation each time.

**Efficient Approach:** The solution can be found using simple observations. If there are multiple odd and even elements in the array then an optimal arrangement of any adjacent elements can be either of the below cases for the product to be even:

{Odd, Even}

{Even, Odd}

{Even, Even}Please note that {Odd, Odd} arrangement of any adjacent element will give an Odd product. Hence, this arrangement is not possible.

The above arrangements is only possible if

number_of_odd_elements <= number_of_even_elements + 1in the array.

Follow the steps below to solve the problem.

- Take two vectors
**even**and**odd**to store the even and odd elements of the array separately. - If the
**size of odd vector is greater than size of even vector + 1,**(as explained above) then solution is not possible. Therefore, print**-1**. - Else first print one element from the
**odd**vector and then one element from**even**vector until both vectors are empty.

Below is the implementation of the above approach.

## C++

`// C++ program to Permutation of Array` `// such that product of all` `// adjacent elements is even` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to print` `// the required permutation` `void` `printPermutation(` `int` `arr[], ` `int` `n)` `{` ` ` `vector<` `int` `> odd, even;` ` ` `// push odd elements in 'odd'` ` ` `// and even elements in 'even'` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `if` `(arr[i] % 2 == 0)` ` ` `even.push_back(arr[i]);` ` ` `else` ` ` `odd.push_back(arr[i]);` ` ` `}` ` ` `int` `size_odd = odd.size();` ` ` `int` `size_even = even.size();` ` ` `// Check if it possible to` ` ` `// arrange the elements` ` ` `if` `(size_odd > size_even + 1)` ` ` `cout << -1 << endl;` ` ` `// else print the permutation` ` ` `else` `{` ` ` `int` `i = 0;` ` ` `int` `j = 0;` ` ` `while` `(i < size_odd && j < size_even) {` ` ` `cout << odd[i] << ` `" "` `;` ` ` `++i;` ` ` `cout << even[j] << ` `" "` `;` ` ` `++j;` ` ` `}` ` ` `// Print remaining odds are even.` ` ` `// and even elements` ` ` `while` `(i < size_odd) {` ` ` `cout << odd[i] << ` `" "` `;` ` ` `++i;` ` ` `}` ` ` `while` `(j < size_even) {` ` ` `cout << even[j] << ` `" "` `;` ` ` `}` ` ` `}` `}` `// Driver code` `int` `main()` `{` ` ` `int` `arr[] = { 6, 7, 9, 8, 10, 11 };` ` ` `int` `N = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `printPermutation(arr, N);` ` ` `return` `0;` `}` |

## Java

`// Java program to permutation of array` `// such that product of all adjacent` `// elements is even` `import` `java.io.*;` `import` `java.util.*;` `class` `GFG{` ` ` `// Function to print` `// the required permutation` `static` `void` `printPermutation(` `int` `arr[], ` `int` `n)` `{` ` ` `ArrayList<Integer> odd = ` `new` `ArrayList<Integer>();` ` ` `ArrayList<Integer> even = ` `new` `ArrayList<Integer>();` ` ` ` ` `// push odd elements in 'odd'` ` ` `// and even elements in 'even'` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `{` ` ` `if` `(arr[i] % ` `2` `== ` `0` `)` ` ` `even.add(arr[i]);` ` ` `else` ` ` `odd.add(arr[i]);` ` ` `}` ` ` ` ` `int` `size_odd = odd.size();` ` ` `int` `size_even = even.size();` ` ` ` ` `// Check if it possible to` ` ` `// arrange the elements` ` ` `if` `(size_odd > size_even + ` `1` `)` ` ` `System.out.println(` `"-1"` `);` ` ` `// Else print the permutation` ` ` `else` ` ` `{` ` ` `int` `i = ` `0` `;` ` ` `int` `j = ` `0` `;` ` ` `while` `(i < size_odd && j < size_even)` ` ` `{` ` ` `System.out.print(odd.get(i) + ` `" "` `);` ` ` `++i;` ` ` `System.out.print(even.get(j) + ` `" "` `);` ` ` `++j;` ` ` `}` ` ` `// Print remaining odds are even.` ` ` `// and even elements` ` ` `while` `(i < size_odd)` ` ` `{` ` ` `System.out.print(odd.get(i) + ` `" "` `);` ` ` `++i;` ` ` `}` ` ` `while` `(j < size_even)` ` ` `{` ` ` `System.out.print(even.get(j) + ` `" "` `);` ` ` `}` ` ` `}` `}` `// Driver Code` `public` `static` `void` `main (String[] args)` `{` ` ` `int` `arr[] = { ` `6` `, ` `7` `, ` `9` `, ` `8` `, ` `10` `, ` `11` `};` ` ` `int` `N = arr.length;` ` ` `printPermutation(arr, N);` `}` `}` `// This code is contributed by offbeat` |

## Python3

`# Python3 program to Permutation of Array` `# such that product of all` `# adjacent elements is even` `# Function to print` `# the required permutation` `def` `printPermutation(arr, n):` ` ` `odd, even ` `=` `[], []` ` ` `# push odd elements in 'odd'` ` ` `# and even elements in 'even'` ` ` `for` `i ` `in` `range` `(n):` ` ` `if` `(arr[i] ` `%` `2` `=` `=` `0` `):` ` ` `even.append(arr[i])` ` ` `else` `:` ` ` `odd.append(arr[i])` ` ` `size_odd ` `=` `len` `(odd)` ` ` `size_even ` `=` `len` `(even)` ` ` `# Check if it possible to` ` ` `# arrange the elements` ` ` `if` `(size_odd > size_even ` `+` `1` `):` ` ` `print` `(` `-` `1` `)` ` ` `# else print the permutation` ` ` `else` `:` ` ` `i, j ` `=` `0` `, ` `0` ` ` `while` `(i < size_odd ` `and` `j < size_even):` ` ` ` ` `print` `(odd[i], end ` `=` `" "` `)` ` ` `i ` `+` `=` `1` ` ` `print` `(even[j], end ` `=` `" "` `)` ` ` `j ` `+` `=` `1` ` ` `# Print remaining odds are even.` ` ` `# and even elements` ` ` `while` `(i < size_odd):` ` ` `print` `(odd[i], end ` `=` `" "` `)` ` ` `i ` `+` `=` `1` ` ` `while` `(j < size_even):` ` ` `print` `(even[j], end ` `=` `" "` `)` ` ` `j ` `+` `=` `1` `# Driver Code` `arr ` `=` `[ ` `6` `, ` `7` `, ` `9` `, ` `8` `, ` `10` `, ` `11` `]` `N ` `=` `len` `(arr)` `# Function call` `printPermutation(arr, N)` `# This code is contributed by Shivam Singh` |

## C#

`// C# program to permutation of array` `// such that product of all adjacent` `// elements is even` `using` `System;` `using` `System.Collections.Generic;` `class` `GFG{` ` ` `// Function to print` `// the required permutation` `static` `void` `printPermutation(` `int` `[]arr, ` `int` `n)` `{` ` ` `List<` `int` `> odd = ` `new` `List<` `int` `>();` ` ` `List<` `int` `> even = ` `new` `List<` `int` `>();` ` ` ` ` `// push odd elements in 'odd'` ` ` `// and even elements in 'even'` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `if` `(arr[i] % 2 == 0)` ` ` `even.Add(arr[i]);` ` ` `else` ` ` `odd.Add(arr[i]);` ` ` `}` ` ` `int` `size_odd = odd.Count;` ` ` `int` `size_even = even.Count;` ` ` `// Check if it possible to` ` ` `// arrange the elements` ` ` `if` `(size_odd > size_even + 1)` ` ` `Console.WriteLine(` `"-1"` `);` ` ` `// Else print the permutation` ` ` `else` ` ` `{` ` ` `int` `i = 0;` ` ` `int` `j = 0;` ` ` `while` `(i < size_odd && j < size_even)` ` ` `{` ` ` `Console.Write(odd[i] + ` `" "` `);` ` ` `++i;` ` ` `Console.Write(even[j] + ` `" "` `);` ` ` `++j;` ` ` `}` ` ` `// Print remaining odds are even.` ` ` `// and even elements` ` ` `while` `(i < size_odd)` ` ` `{` ` ` `Console.Write(odd[i] + ` `" "` `);` ` ` `++i;` ` ` `}` ` ` `while` `(j < size_even)` ` ` `{` ` ` `Console.Write(even[j] + ` `" "` `);` ` ` `}` ` ` `}` `}` `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `[]arr = { 6, 7, 9, 8, 10, 11 };` ` ` `int` `N = arr.Length;` ` ` `printPermutation(arr, N);` `}` `}` `// This code is contributed by PrinciRaj1992` |

## Javascript

`<script>` `// JavaScript program to permutation of array` `// such that product of all adjacent` `// elements is even` `// Function to print` `// the required permutation` `function` `printPermutation(arr, n)` `{` ` ` `let odd = [];` ` ` `let even = [];` ` ` ` ` `// push odd elements in 'odd'` ` ` `// and even elements in 'even'` ` ` `for` `(let i = 0; i < n; i++)` ` ` `{` ` ` `if` `(arr[i] % 2 == 0)` ` ` `even.push(arr[i]);` ` ` `else` ` ` `odd.push(arr[i]);` ` ` `}` ` ` ` ` `let size_odd = odd.length;` ` ` `let size_even = even.length;` ` ` ` ` `// Check if it possible to` ` ` `// arrange the elements` ` ` `if` `(size_odd > size_even + 1)` ` ` `document.write(` `"-1"` `);` ` ` ` ` `// Else prlet the permutation` ` ` `else` ` ` `{` ` ` `let i = 0;` ` ` `let j = 0;` ` ` ` ` `while` `(i < size_odd && j < size_even)` ` ` `{` ` ` `document.write(odd[i] + ` `" "` `);` ` ` `++i;` ` ` `document.write(even[j] + ` `" "` `);` ` ` `++j;` ` ` `}` ` ` ` ` `// Print remaining odds are even.` ` ` `// and even elements` ` ` `while` `(i < size_odd)` ` ` `{` ` ` `document.write(odd[i] + ` `" "` `);` ` ` `++i;` ` ` `}` ` ` `while` `(j < size_even)` ` ` `{` ` ` `document.write(even[j] + ` `" "` `);` ` ` `}` ` ` `}` `}` `// Driver Code` ` ` `let arr = [ 6, 7, 9, 8, 10, 11 ];` ` ` `let N = arr.length;` ` ` ` ` `printPermutation(arr, N);` ` ` `</script>` |

**Output**

7 6 9 8 11 10

**Time Complexity:** O(N) where N the number of elements. O(N) time is required to traverse the given array and form the odd & even vectors and O(N) is required to print the permutation.**Auxiliary Space: **O(N) because the given array elements are distributed among the two vectors.