Related Articles
Printing brackets in Matrix Chain Multiplication Problem
• Difficulty Level : Hard
• Last Updated : 02 Feb, 2021

Prerequisite : Dynamic Programming | Set 8 (Matrix Chain Multiplication)
Given a sequence of matrices, find the most efficient way to multiply these matrices together. The problem is not actually to perform the multiplications, but merely to decide in which order to perform the multiplications.
We have many options to multiply a chain of matrices because matrix multiplication is associative. In other words, no matter how we parenthesize the product, the result will be the same. For example, if we had four matrices A, B, C, and D, we would have:

`(ABC)D = (AB)(CD) = A(BCD) = ....`

However, the order in which we parenthesize the product affects the number of simple arithmetic operations needed to compute the product, or the efficiency. For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × 60 matrix. Then,

```(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations
A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations.```

Clearly the first parenthesization requires less number of operations.
Given an array p[] which represents the chain of matrices such that the ith matrix Ai is of dimension p[i-1] x p[i]. We need to write a function MatrixChainOrder() that should return the minimum number of multiplications needed to multiply the chain.

```Input:  p[] = {40, 20, 30, 10, 30}
Output: Optimal parenthesization is  ((A(BC))D)
Optimal cost of parenthesization is 26000
There are 4 matrices of dimensions 40x20, 20x30,
30x10 and 10x30. Let the input 4 matrices be A, B,
C and D.  The minimum number of  multiplications are
obtained by putting parenthesis in following way
(A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30

Input: p[] = {10, 20, 30, 40, 30}
Output: Optimal parenthesization is (((AB)C)D)
Optimal cost of parenthesization is 30000
There are 4 matrices of dimensions 10x20, 20x30,
30x40 and 40x30. Let the input 4 matrices be A, B,
C and D.  The minimum number of multiplications are
obtained by putting parenthesis in following way
((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30

Input: p[] = {10, 20, 30}
Output: Optimal parenthesization is (AB)
Optimal cost of parenthesization is 6000
There are only two matrices of dimensions 10x20
and 20x30. So there is only one way to multiply
the matrices, cost of which is 10*20*30```

This problem is mainly an extension of previous post. In the previous post, we have discussed algorithm for finding optimal cost only. Here we need print parenthssization also.

The idea is to store optimal break point for every subexpression (i, j) in a 2D array bracket[n][n]. Once we have bracket array us constructed, we can print parenthesization using below code.

```// Prints parenthesization in subexpression (i, j)
printParenthesis(i, j, bracket[n][n], name)
{
// If only one matrix left in current segment
if (i == j)
{
print name;
name++;
return;
}

print "(";

// Recursively put brackets around subexpression
// from i to bracket[i][j].
printParenthesis(i, bracket[i][j], bracket, name);

// Recursively put brackets around subexpression
// from bracket[i][j] + 1 to j.
printParenthesis(bracket[i][j]+1, j, bracket, name);

print ")";
}```

Below is C++ implementation of above steps.

## CPP

 `// C++ program to print optimal parenthesization``// in matrix chain multiplication.``#include ``using` `namespace` `std;` `// Function for printing the optimal``// parenthesization of a matrix chain product``void` `printParenthesis(``int` `i, ``int` `j, ``int` `n, ``int``* bracket,``                      ``char``& name)``{``    ``// If only one matrix left in current segment``    ``if` `(i == j) {``        ``cout << name++;``        ``return``;``    ``}` `    ``cout << ``"("``;` `    ``// Recursively put brackets around subexpression``    ``// from i to bracket[i][j].``    ``// Note that "*((bracket+i*n)+j)" is similar to``    ``// bracket[i][j]``    ``printParenthesis(i, *((bracket + i * n) + j), n,``                     ``bracket, name);` `    ``// Recursively put brackets around subexpression``    ``// from bracket[i][j] + 1 to j.``    ``printParenthesis(*((bracket + i * n) + j) + 1, j, n,``                     ``bracket, name);``    ``cout << ``")"``;``}` `// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n``// Please refer below article for details of this``// function``// https://goo.gl/k6EYKj``void` `matrixChainOrder(``int` `p[], ``int` `n)``{``    ``/* For simplicity of the program, one extra``       ``row and one extra column are allocated in``        ``m[][]. 0th row and 0th column of m[][]``        ``are not used */``    ``int` `m[n][n];` `    ``// bracket[i][j] stores optimal break point in``    ``// subexpression from i to j.``    ``int` `bracket[n][n];` `    ``/* m[i,j] = Minimum number of scalar multiplications``    ``needed to compute the matrix A[i]A[i+1]...A[j] =``    ``A[i..j] where dimension of A[i] is p[i-1] x p[i] */` `    ``// cost is zero when multiplying one matrix.``    ``for` `(``int` `i = 1; i < n; i++)``        ``m[i][i] = 0;` `    ``// L is chain length.``    ``for` `(``int` `L = 2; L < n; L++)``    ``{``        ``for` `(``int` `i = 1; i < n - L + 1; i++)``        ``{``            ``int` `j = i + L - 1;``            ``m[i][j] = INT_MAX;``            ``for` `(``int` `k = i; k <= j - 1; k++)``            ``{``                ``// q = cost/scalar multiplications``                ``int` `q = m[i][k] + m[k + 1][j]``                        ``+ p[i - 1] * p[k] * p[j];``                ``if` `(q < m[i][j])``                ``{``                    ``m[i][j] = q;` `                    ``// Each entry bracket[i,j]=k shows``                    ``// where to split the product arr``                    ``// i,i+1....j for the minimum cost.``                    ``bracket[i][j] = k;``                ``}``            ``}``        ``}``    ``}` `    ``// The first matrix is printed as 'A', next as 'B',``    ``// and so on``    ``char` `name = ``'A'``;` `    ``cout << ``"Optimal Parenthesization is : "``;``    ``printParenthesis(1, n - 1, n, (``int``*)bracket, name);``    ``cout << ``"nOptimal Cost is : "` `<< m[n - 1];``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 40, 20, 30, 10, 30 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``matrixChainOrder(arr, n);``    ``return` `0;``}`

## Java

 `// Java program to print optimal parenthesization``// in matrix chain multiplication.``class` `GFG``{``  ``static` `char` `name;` `  ``// Function for printing the optimal``  ``// parenthesization of a matrix chain product``  ``static` `void` `printParenthesis(``int` `i, ``int` `j,``                               ``int` `n, ``int``[][] bracket)``  ``{` `    ``// If only one matrix left in current segment``    ``if` `(i == j)``    ``{``      ``System.out.print(name++);``      ``return``;``    ``}``    ``System.out.print(``"("``);` `    ``// Recursively put brackets around subexpression``    ``// from i to bracket[i][j].``    ``// Note that "*((bracket+i*n)+j)" is similar to``    ``// bracket[i][j]``    ``printParenthesis(i, bracket[i][j], n, bracket);` `    ``// Recursively put brackets around subexpression``    ``// from bracket[i][j] + 1 to j.``    ``printParenthesis(bracket[i][j] + ``1``, j, n, bracket);``    ``System.out.print(``")"``);``  ``}` `  ``// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n``  ``// Please refer below article for details of this``  ``// function``  ``// https://goo.gl/k6EYKj``  ``static` `void` `matrixChainOrder(``int` `p[], ``int` `n)``  ``{``    ``/*``         ``* For simplicity of the program,``         ``one extra row and one extra column are``         ``* allocated in m[][]. 0th row and``         ``0th column of m[][] are not used``         ``*/``    ``int``[][] m = ``new` `int``[n][n];` `    ``// bracket[i][j] stores optimal break point in``    ``// subexpression from i to j.``    ``int``[][] bracket = ``new` `int``[n][n];` `    ``/*``         ``* m[i,j] = Minimum number of scalar``         ``multiplications needed to compute the``         ``* matrix A[i]A[i+1]...A[j] = A[i..j] where``         ``dimension of A[i] is p[i-1] x p[i]``         ``*/` `    ``// cost is zero when multiplying one matrix.``    ``for` `(``int` `i = ``1``; i < n; i++)``      ``m[i][i] = ``0``;` `    ``// L is chain length.``    ``for` `(``int` `L = ``2``; L < n; L++)``    ``{``      ``for` `(``int` `i = ``1``; i < n - L + ``1``; i++)``      ``{``        ``int` `j = i + L - ``1``;``        ``m[i][j] = Integer.MAX_VALUE;``        ``for` `(``int` `k = i; k <= j - ``1``; k++)``        ``{` `          ``// q = cost/scalar multiplications``          ``int` `q = m[i][k] + m[k + ``1``][j] + p[i - ``1``] * p[k] * p[j];``          ``if` `(q < m[i][j])``          ``{``            ``m[i][j] = q;` `            ``// Each entry bracket[i,j]=k shows``            ``// where to split the product arr``            ``// i,i+1....j for the minimum cost.``            ``bracket[i][j] = k;``          ``}``        ``}``      ``}``    ``}` `    ``// The first matrix is printed as 'A', next as 'B',``    ``// and so on``    ``name = ``'A'``;``    ``System.out.print(``"Optimal Parenthesization is : "``);``    ``printParenthesis(``1``, n - ``1``, n, bracket);``    ``System.out.print(``"\nOptimal Cost is : "` `+ m[``1``][n - ``1``]);``  ``}` `  ``// Driver code``  ``public` `static` `void` `main(String[] args)``  ``{``    ``int` `arr[] = { ``40``, ``20``, ``30``, ``10``, ``30` `};``    ``int` `n = arr.length;``    ``matrixChainOrder(arr, n);``  ``}``}` `// This code is contributed by sanjeev2552`
Output
`Optimal Parenthesization is : ((A(BC))D)nOptimal Cost is : 26000`

Time Complexity: O(n3
Auxiliary Space: O(n2)

Another Approach:

——————————————

This solution try to solve the problem using Recursion using permutations.

```Let's take example:  {40, 20, 30, 10, 30}
n = 5```

Let’s divide that into a Matrix

```[ [40, 20], [20, 30], [30, 10], [10, 30] ]

[ A , B , C , D ]

it contains 4 matrices i.e. (n - 1)```

We have 3 combinations to multiply  i.e.  (n-2)

`AB    or    BC    or     CD`

### Algorithm:

1) Given array of matrices with length M, Loop through  M – 1 times

2) Merge consecutive matrices in each loop

```for (int i = 0; i < M - 1; i++) {
int cost =  (matrices[i] *
matrices[i] * matrices[i+1]);

// STEP - 3
// STEP - 4
}```

3) Merge the current two matrices into one, and remove merged matrices list from list.

```If  A, B merged, then A, B must be removed from the List

and NEW matrix list will be like
newMatrices = [  AB,  C ,  D ]

We have now 3 matrices, in any loop
Loop#1:  [ AB,  C,   D ]
Loop#2:  [ A,   BC,  D ]
Loop#3   [ A,   B,   CD ]```

4) Repeat: Go to STEP – 1  with  newMatrices as input M — recursion

5) Stop recursion, when we get 2 matrices in the list.

### Workflow

Matrices are reduced in following way,

and cost’s must be retained and summed-up during recursion with previous values of each parent step.

```[ A, B , C, D ]

[(AB), C, D ]
[ ((AB)C), D ]--> [ (((AB)C)D) ]
- return & sum-up total cost of this step.
[ (AB),  (CD)] --> [ ((AB)(CD)) ]
- return .. ditto..

[ A, (BC), D ]
[ (A(BC)), D ]--> [ ((A(BC))D) ]
- return
[ A, ((BC)D) ]--> [ (A((BC)D)) ]
- return

[ A, B, (CD) ]
[ A, (B(CD)) ]--> [ (A(B(CD))) ]
- return
[ (AB), (CD) ]--> [ ((AB)(CD)) ]
- return .. ditto..```

on return i.e. at final step of each recursion, check if  this value smaller than of any other.

Below is JAVA implementation of above steps.

## Java

 `import` `java.util.Arrays;` `public` `class` `MatrixMultiplyCost {` `    ``static` `class` `FinalCost``    ``{``        ``public` `String label = ``""``;``        ``public` `int` `cost = Integer.MAX_VALUE;``    ``}` `    ``private` `void` `optimalCost(``int``[][] matrices,``                             ``String[] labels, ``int` `prevCost,``                             ``FinalCost finalCost)``    ``{``        ``int` `len = matrices.length;` `        ``if` `(len < ``2``)``        ``{``            ``finalCost.cost = ``0``;``            ``return``;``        ``}``        ``else` `if` `(len == ``2``)``        ``{``            ``int` `cost = prevCost``                       ``+ (matrices[``0``][``0``] *``                          ``matrices[``0``][``1``] *``                          ``matrices[``1``][``1``]);` `            ``// This is where minimal cost has been caught``            ``// for whole program``            ``if` `(cost < finalCost.cost)``            ``{``                ``finalCost.cost = cost;``                ``finalCost.label``                    ``= ``"("` `+ labels[``0``]``                    ``+ labels[``1``] + ``")"``;``            ``}``            ``return``;``        ``}` `        ``// recursive Reduce``        ``for` `(``int` `i = ``0``; i < len - ``1``; i++)``        ``{``            ``int` `j;``            ``int``[][] newMatrix = ``new` `int``[len - ``1``][``2``];``            ``String[] newLabels = ``new` `String[len - ``1``];``            ``int` `subIndex = ``0``;` `            ``// STEP-1:``            ``//   - Merge two matrices's into one - in each``            ``//   loop, you move merge position``            ``//        - if i = 0 THEN  (AB) C D ...``            ``//        - if i = 1 THEN  A (BC) D ...``            ``//        - if i = 2 THEN  A B (CD) ...``            ``//   - and find the cost of this two matrices``            ``//   multiplication``            ``int` `cost = (matrices[i][``0``] * matrices[i][``1``]``                        ``* matrices[i + ``1``][``1``]);` `            ``// STEP - 2:``            ``//    - Build new matrices after merge``            ``//    - Keep track of the merged labels too``            ``for` `(j = ``0``; j < i; j++) {``                ``newMatrix[subIndex] = matrices[j];``                ``newLabels[subIndex++] = labels[j];``            ``}` `            ``newMatrix[subIndex][``0``] = matrices[i][``0``];``            ``newMatrix[subIndex][``1``] = matrices[i + ``1``][``1``];``            ``newLabels[subIndex++]``                ``= ``"("` `+ labels[i] + labels[i + ``1``] + ``")"``;` `            ``for` `(j = i + ``2``; j < len; j++) {``                ``newMatrix[subIndex] = matrices[j];``                ``newLabels[subIndex++] = labels[j];``            ``}` `            ``optimalCost(newMatrix, newLabels,``                        ``prevCost + cost, finalCost);``        ``}``    ``}` `    ``public` `FinalCost findOptionalCost(``int``[] arr)``    ``{``        ``// STEP -1 : Prepare and convert inout as Matrix``        ``int``[][] matrices = ``new` `int``[arr.length - ``1``][``2``];``        ``String[] labels = ``new` `String[arr.length - ``1``];` `        ``for` `(``int` `i = ``0``; i < arr.length - ``1``; i++) {``            ``matrices[i][``0``] = arr[i];``            ``matrices[i][``1``] = arr[i + ``1``];``            ``labels[i] = Character.toString((``char``)(``65` `+ i));``        ``}``        ``printMatrix(matrices);` `        ``FinalCost finalCost = ``new` `FinalCost();``        ``optimalCost(matrices, labels, ``0``, finalCost);` `        ``return` `finalCost;``    ``}` `    ``/**``     ``* Driver Code``     ``*/``    ``public` `static` `void` `main(String[] args)``    ``{``        ``MatrixMultiplyCost calc = ``new` `MatrixMultiplyCost();` `        ``// ======= *** TEST CASES **** ============` `        ``int``[] arr = { ``40``, ``20``, ``30``, ``10``, ``30` `};``        ``FinalCost cost = calc.findOptionalCost(arr);``        ``System.out.println(``"Final labels: \n"` `+ cost.label);``        ``System.out.println(``"Final Cost:\n"` `+ cost.cost``                           ``+ ``"\n"``);``    ``}` `    ``/**``     ``* Ignore this method``     ``* - THIS IS for DISPLAY purpose only``     ``*/``    ``private` `static` `void` `printMatrix(``int``[][] matrices)``    ``{``        ``System.out.print(``"matrices = \n["``);``        ``for` `(``int``[] row : matrices) {``            ``System.out.print(Arrays.toString(row) + ``" "``);``        ``}``        ``System.out.println(``"]"``);``    ``}``}` `// This code is contributed by suvera`
Output
```matrices =
[[40, 20] [20, 30] [30, 10] [10, 30] ]
Final labels:
((A(BC))D)
Final Cost:
26000```

This article is contributed by Yasin Zafar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up