Print Triangle separated pattern

Given a number N, the task is to print the triangle separated pattern.

Triangle Separated Pattern: Pattern in which four triangles (left, down, right, up) are separated by forward and backward slash, see this below:

\*****/
*\***/*
**\*/**
***/***
**/*\**
*/***\*
/*****\

Note: N should be an odd number and the value of N should be more than 4.

Examples:

Input: N = 5
Output: 
        \***/
        *\*/*
        **/**
        */*\*
        /***\

Input: N = 7
Output:
        \*****/
        *\***/*
        **\*/**
        ***/***
        **/*\**
        */***\*
        /*****\

Approach: By observing the above pattern, when the indexes of rows and columns are equal, then is printed and when the sum of indexes of rows and columns is N, then ‘/’ is printed. Below is the recursive approach:



  1. Use two value i for rows and j for column, which iterates from (0, 0) to (N-1, N-1) for printing the require pattern.
  2. Recursively iterates from (0, 0) to (N-1, N-1):
    • Base Case: If indexes of rows and columns are greater than or equal to N is the termination condition for the given pattern.
      if(i >= N) {
        return 0;
      }
      if(j >= N) {
        return 1;
      }
      
    • Print Statement: If the base case condition is not met, then print ‘/’, and ‘*’ on the basis of below conditions:
      if(i==j) {
         print('')
      }
      else if(i + j == N-1) {
         print('/')
      }
      else {
         print('*')
      }
      
    • Recursive Call: At each recursive call(except the base case), return the recursive function for next iteration for rows and column:
      // Recursive call for rows
      recursive_function(i, j+1, N)
      
      // Recursive call for changing rows
      recursive_function(i+1, j, N)
      

Below is the implementation of the above approach:

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ programm to print the triangle
// separated pattern using
// star and slash character
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to print pattern recursively
int printPattern(
    int i, int j, int n)
{
    // Base Case
    if (j >= n) {
        return 0;
    }
    if (i >= n) {
        return 1;
    }
  
    // Conditions to print slash
    if (j == i || j == n - 1 - i) {
  
        // Condition to print
        // forword slash
        if (i == n - 1 - j) {
            cout << "/";
        }
  
        // Condition to print
        // backward slash
        else {
            cout << "\\";
        }
    }
  
    // Else print '*'
    else {
        cout << "*";
    }
  
    // Recursive call for rows
    if (printPattern(i, j + 1, n)
        == 1) {
        return 1;
    }
  
    cout << endl;
  
    // Recursive call for changing
    // the rows
    return printPattern(i + 1, 0, n);
}
  
// Driver Code
int main()
{
    int N = 9;
  
    // Function Call
    printPattern(0, 0, N);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java programm to print the triangle
// separated pattern using
// star and slash character
class GFG{
   
// Function to print pattern recursively
static int printPattern(
    int i, int j, int n)
{
    // Base Case
    if (j >= n) {
        return 0;
    }
    if (i >= n) {
        return 1;
    }
   
    // Conditions to print slash
    if (j == i || j == n - 1 - i) {
   
        // Condition to print
        // forword slash
        if (i == n - 1 - j) {
            System.out.print("/");
        }
   
        // Condition to print
        // backward slash
        else {
            System.out.print("\\");
        }
    }
   
    // Else print '*'
    else {
        System.out.print("*");
    }
   
    // Recursive call for rows
    if (printPattern(i, j + 1, n)
        == 1) {
        return 1;
    }
   
    System.out.println();
   
    // Recursive call for changing
    // the rows
    return printPattern(i + 1, 0, n);
}
   
// Driver Code
public static void main(String[] args)
{
    int N = 9;
   
    // Function Call
    printPattern(0, 0, N);
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 programm to print the triangle
# separated pattern using
# star and slash character
  
# Function to print pattern recursively
def printPattern(i,j, n):
  
    # Base Case
    if (j >= n) :
        return 0
    if (i >= n):
        return 1
  
    # Conditions to print slash
    if (j == i or j == n - 1 - i):
  
        # Condition to print
        # forword slash
        if (i == n - 1 - j):
            print("/",end="")
  
        # Condition to print
        # backward slash
        else:
            print("\\",end="")
  
    # Else print '*'
    else:
        print("*",end="")
  
    # Recursive call for rows
    if (printPattern(i, j + 1, n)
        == 1):
        return 1
  
    print()
  
    # Recursive call for changing
    # the rows
    return printPattern(i + 1, 0, n)
  
# Driver Code
if __name__ == "__main__":
  
    N = 9
  
    # Function Call
    printPattern(0, 0, N)
  
# This code is contributed by chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

      
// C# programm to print the triangle
// separated pattern using
// star and slash character
using System;
  
class GFG{
    
// Function to print pattern recursively
static int printPattern(
    int i, int j, int n)
{
    // Base Case
    if (j >= n) {
        return 0;
    }
    if (i >= n) {
        return 1;
    }
    
    // Conditions to print slash
    if (j == i || j == n - 1 - i) {
    
        // Condition to print
        // forword slash
        if (i == n - 1 - j) {
            Console.Write("/");
        }
    
        // Condition to print
        // backward slash
        else {
            Console.Write("\\");
        }
    }
    
    // Else print '*'
    else {
        Console.Write("*");
    }
    
    // Recursive call for rows
    if (printPattern(i, j + 1, n)
        == 1) {
        return 1;
    }
    
    Console.WriteLine();
    
    // Recursive call for changing
    // the rows
    return printPattern(i + 1, 0, n);
}
    
// Driver Code
public static void Main(String[] args)
{
    int N = 9;
    
    // Function Call
    printPattern(0, 0, N);
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

\*******/
*\*****/*
**\***/**
***\*/***
****/****
***/*\***
**/***\**
*/*****\*
/*******\

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.