Related Articles
Print the nodes of Binary Tree having a grandchild
• Last Updated : 11 Nov, 2020

Given a Binary Tree, the task is to print the nodes that have grandchildren.

Examples:

Input:

Output: 20 8
Explanation:
20 and 8 are the grandparents of 4, 12 and 10, 14.

Input:

Output:
Explanation:
1 is the grandparent of 4, 5.

Approach: The idea uses Recursion. Below are the steps:

1. Traverse the given tree at every node.
2. Check if each node has grandchildren node or not.
3. For any tree node(say temp) if one of the below node exists then current node is the grandparent node:
• temp->left->left.
• temp->left->right.
• temp->right->left.
• temp->right->right.
4. If any of the above exist for any node temp then the node temp is the grandparent node.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// A Binary Tree Node``struct` `node {``    ``struct` `node *left, *right;``    ``int` `key;``};` `// Function to create new tree node``node* newNode(``int` `key)``{``    ``node* temp = ``new` `node;``    ``temp->key = key;``    ``temp->left = temp->right = NULL;``    ``return` `temp;``}` `// Function to print the nodes of``// the Binary Tree having a grandchild``void` `cal(``struct` `node* root)``{``    ``// Base case to check``    ``// if the tree exists` `    ``if` `(root == NULL)``        ``return``;` `    ``else` `{` `        ``// Check if there is a left and``        ``// right child of the curr node``        ``if` `(root->left != NULL``            ``&& root->right != NULL) {` `            ``// Check for grandchildren``            ``if` `(root->left->left != NULL``                ``|| root->left->right != NULL``                ``|| root->right->left != NULL``                ``|| root->right->right != NULL) {` `                ``// Print the node's key``                ``cout << root->key << ``" "``;``            ``}``        ``}` `        ``// Check if the left child``        ``// of node is not null``        ``else` `if` `(root->left != NULL) {` `            ``// Check for grandchildren``            ``if` `(root->left->left != NULL``                ``|| root->left->right != NULL) {``                ``cout << root->key << ``" "``;``            ``}``        ``}` `        ``// Check if the right child``        ``// of node is not null``        ``else` `if` `(root->right != NULL) {` `            ``// Check for grandchildren``            ``if` `(root->right->left != NULL``                ``|| root->right->right != NULL) {``                ``cout << root->key << ``" "``;``            ``}``        ``}` `        ``// Recursive call on left and``        ``// right subtree``        ``cal(root->left);``        ``cal(root->right);``    ``}``}` `// Driver Code``int` `main()``{``    ``// Given Tree``    ``struct` `node* root = newNode(1);``    ``root->left = newNode(2);``    ``root->right = newNode(3);``    ``root->left->left = newNode(4);``    ``root->left->right = newNode(5);` `    ``// Function Call``    ``cal(root);``    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.util.*;` `class` `GFG{` `// A Binary Tree Node``static` `class` `node``{``    ``node left, right;``    ``int` `key;``};` `// Function to create new tree node``static` `node newNode(``int` `key)``{``    ``node temp = ``new` `node();``    ``temp.key = key;``    ``temp.left = temp.right = ``null``;``    ``return` `temp;``}` `// Function to print the nodes of``// the Binary Tree having a grandchild``static` `void` `cal(node root)``{``    ` `    ``// Base case to check``    ``// if the tree exists``    ``if` `(root == ``null``)``        ``return``;` `    ``else``    ``{``        ` `        ``// Check if there is a left and``        ``// right child of the curr node``        ``if` `(root.left != ``null` `&&``           ``root.right != ``null``)``        ``{``            ` `            ``// Check for grandchildren``            ``if` `(root.left.left != ``null` `||``               ``root.left.right != ``null` `||``               ``root.right.left != ``null` `||``              ``root.right.right != ``null``)``            ``{``                ` `                ``// Print the node's key``                ``System.out.print(root.key + ``" "``);``            ``}``        ``}` `        ``// Check if the left child``        ``// of node is not null``        ``else` `if` `(root.left != ``null``)``        ``{``            ` `            ``// Check for grandchildren``            ``if` `(root.left.left != ``null` `||``               ``root.left.right != ``null``)``            ``{``                ``System.out.print(root.key + ``" "``);``            ``}``        ``}` `        ``// Check if the right child``        ``// of node is not null``        ``else` `if` `(root.right != ``null``)``        ``{``            ` `            ``// Check for grandchildren``            ``if` `(root.right.left != ``null` `||``               ``root.right.right != ``null``)``            ``{``                ``System.out.print(root.key + ``" "``);``            ``}``        ``}` `        ``// Recursive call on left and``        ``// right subtree``        ``cal(root.left);``        ``cal(root.right);``    ``}``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ` `    ``// Given Tree``    ``node root = newNode(``1``);``    ``root.left = newNode(``2``);``    ``root.right = newNode(``3``);``    ``root.left.left = newNode(``4``);``    ``root.left.right = newNode(``5``);` `    ``// Function call``    ``cal(root);``}``}` `// This code is contributed by Amit Katiyar`

## Python3

 `# Python3 program for the``# above approach` `# A Binary Tree Node``class` `newNode:``  ` `    ``def` `__init__(``self``, key):``      ` `        ``self``.key ``=` `key``        ``self``.left ``=` `None``        ``self``.right ``=` `None` `# Function to print the nodes``# of the Binary Tree having a``# grandchild``def` `cal(root):``  ` `    ``# Base case to check``    ``# if the tree exists``    ``if` `(root ``=``=` `None``):``        ``return` `    ``else``:``        ``# Check if there is a left``        ``# and right child of the``        ``# curr node``        ``if` `(root.left !``=` `None` `and``            ``root.right !``=` `None``):``          ` `            ``# Check for grandchildren``            ``if` `(root.left.left !``=` `None` `or``                ``root.left.right !``=` `None` `or``                ``root.right.left !``=` `None` `or``                ``root.right.right !``=` `None``):``              ` `                ``# Print the node's key``                ``print``(root.key, end ``=` `" "``)` `        ``# Check if the left child``        ``# of node is not None``        ``elif` `(root.left !``=` `None``):``          ` `            ``# Check for grandchildren``            ``if` `(root.left.left !``=` `None` `or``                ``root.left.right !``=` `None``):``                ``print``(root.key, end ``=` `" "``)` `        ``# Check if the right child``        ``# of node is not None``        ``elif``(root.right !``=` `None``):``          ` `            ``# Check for grandchildren``            ``if` `(root.right.left !``=` `None` `or``                ``root.right.right !``=` `None``):``                ``print``(root.key, end ``=` `" "``)` `        ``# Recursive call on left and``        ``# right subtree``        ``cal(root.left)``        ``cal(root.right)` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``  ` `    ``# Given Tree``    ``root ``=` `newNode(``1``)``    ``root.left ``=` `newNode(``2``)``    ``root.right ``=` `newNode(``3``)``    ``root.left.left ``=` `newNode(``4``)``    ``root.left.right ``=` `newNode(``5``)` `    ``# Function Call``    ``cal(root)` `# This code is contributed by SURENDRA_GANGWAR`

## C#

 `// C# program for the``// above approach``using` `System;``class` `GFG{` `// A Binary Tree Node``public` `class` `node``{``  ``public` `node left, right;``  ``public` `int` `key;``};` `// Function to create new``// tree node``static` `node newNode(``int` `key)``{``  ``node temp = ``new` `node();``  ``temp.key = key;``  ``temp.left = temp.right = ``null``;``  ``return` `temp;``}` `// Function to print the``// nodes of the Binary Tree``// having a grandchild``static` `void` `cal(node root)``{``  ``// Base case to check``  ``// if the tree exists``  ``if` `(root == ``null``)``    ``return``;``  ` `  ``else``  ``{``    ``// Check if there is a left and``    ``// right child of the curr node``    ``if` `(root.left != ``null` `&&``        ``root.right != ``null``)``    ``{``      ``// Check for grandchildren``      ``if` `(root.left.left != ``null` `||``          ``root.left.right != ``null` `||``          ``root.right.left != ``null` `||``          ``root.right.right != ``null``)``      ``{``        ``// Print the node's key``        ``Console.Write(root.key + ``" "``);``      ``}``    ``}` `    ``// Check if the left child``    ``// of node is not null``    ``else` `if` `(root.left != ``null``)``    ``{``      ``// Check for grandchildren``      ``if` `(root.left.left != ``null` `||``          ``root.left.right != ``null``)``      ``{``        ``Console.Write(root.key + ``" "``);``      ``}``    ``}` `    ``// Check if the right child``    ``// of node is not null``    ``else` `if` `(root.right != ``null``)``    ``{``      ``// Check for grandchildren``      ``if` `(root.right.left != ``null` `||``          ``root.right.right != ``null``)``      ``{``        ``Console.Write(root.key + ``" "``);``      ``}``    ``}` `    ``// Recursive call on left and``    ``// right subtree``    ``cal(root.left);``    ``cal(root.right);``  ``}``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``  ``// Given Tree``  ``node root = newNode(1);``  ``root.left = newNode(2);``  ``root.right = newNode(3);``  ``root.left.left = newNode(4);``  ``root.left.right = newNode(5);` `  ``// Function call``  ``cal(root);``}``}` `// This code is contributed by Princi Singh`
Output:
```1

```

Time Complexity: O(N), where N is the number of nodes.
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up