# Print all sequences starting with n and consecutive difference limited to k

• Last Updated : 05 May, 2021

Given three positive integer n, s and k. The task is to print all possible sequence of length s, starting with n and the absolute difference between consecutive element is less than k.
Examples :

Input : n = 5, s = 3, k = 2
Output :
5 5 5
5 5 6
5 5 4
5 6 6
5 6 7
5 6 5
5 4 4
5 4 5
5 4 3

Input : n = 3, s = 2, k = 1
Output :
3 3

Observe, to get the absolute difference between consecutive element less than k, we can increase from 0 to k – 1. Similarly, we can decrease the next element from 1 to k – 1.
Now, to form the required sequence, we will first push ‘n’ to the vector. And then try to fill the other element of the sequence by making recursive call for each element in the sequence. At each recursive call we run a loop from 0 to k – 1 and add (n + i) to the sequence. Once we make the sequence of size ‘s’, we will print the whole sequence and return back to the recursively calling function and remove (n + i).
Similarly, we can run loop from 1 to k – 1 and insert (n – i) to next element position.
To check the number of remaining element required we will pass size – 1 to recursive call and when size become 0, we will print the whole sequence.
Below is the implementation of this approach:

## C++

 // CPP Program all sequence of length s// starting with n such that difference// between consecutive element is less than k.#include using namespace std; // Recursive function to print all sequence// of length s starting with n such that// difference between consecutive element// is less than k.void printSequence(vector& v, int n,                               int s, int k){    // If size become 0, print the sequence.    if (s == 0) {        for (int i = 0; i < v.size(); i++)            cout << v[i] << " ";        cout << endl;        return;    }     // Increment the next element and make    // recursive call after inserting the    // (n + i) to the sequence.    for (int i = 0; i < k; i++) {        v.push_back(n + i);        printSequence(v, n + i, s - 1, k);        v.pop_back();    }     // Decrementing the next element and'    // make recursive call after inserting    // the (n - i) to the sequence.    for (int i = 1; i < k; i++) {        v.push_back(n - i);        printSequence(v, n - i, s - 1, k);        v.pop_back();    }} // Wrapper Functionvoid wrapper(int n, int s, int k){    vector v;    v.push_back(n);    printSequence(v, n, s - 1, k);} // Driven Programint main(){    int n = 5, s = 3, k = 2;    wrapper(n, s, k);    return 0;}

## Java

 // Java Program all sequence of length s// starting with n such that difference// between consecutive element is less than k.import java.io.*;import java.util.*; public class GFG {      static List v = new ArrayList();    // Recursive function to print all sequence    // of length s starting with n such that    // difference between consecutive element    // is less than k.    static void printSequence(int n,                                   int s, int k)    {        // If size become 0, print the sequence.        if (s == 0) {            for (int i = 0; i < v.size(); i++)                System.out.print(v.get(i) + " ");            System.out.println();            return;        }               // Increment the next element and make        // recursive call after inserting the        // (n + i) to the sequence.        for (int i = 0; i < k; i++) {            v.add(n + i);            printSequence(n + i, s - 1, k);            v.remove(v.size() - 1);        }               // Decrementing the next element and'        // make recursive call after inserting        // the (n - i) to the sequence.        for (int i = 1; i < k; i++) {            v.add(n - i);            printSequence(n - i, s - 1, k);            v.remove(v.size() - 1);        }    }           // Wrapper Function    static void wrapper(int n, int s, int k)    {        v.add(n);        printSequence(n, s - 1, k);    }           // Driven Program    public static void main(String args[])    {        int n = 5, s = 3, k = 2;        wrapper(n, s, k);    }}  // This code is contributed by Manish Shaw// (manishshaw1)

## Python3

 # Python3 Program all sequence of length s# starting with n such that difference# between consecutive element is less than k. # Recursive function to print all sequence# of length s starting with n such that# difference between consecutive element# is less than k.def printSequence(v, n, s, k):     # If size become 0, print the sequence.    if (s == 0) :        for i in range(0, len(v)):            print ("{} ".format(v[i]), end="")        print ("")        return;          # Increment the next element and make    # recursive call after inserting the    # (n + i) to the sequence.    for i in range(0,k):        v.append(n + i)        printSequence(v, n + i, s - 1, k)        v.pop()          # Decrementing the next element and'    # make recursive call after inserting    # the (n - i) to the sequence.    for i in range(1,k):        v.append(n - i)        printSequence(v, n - i, s - 1, k)        v.pop()       # Wrapper Functiondef wrapper(n, s, k):    v = []    v.append(n)    printSequence(v, n, s - 1, k) # Driven Programn = 5; s = 3; k = 2;wrapper(n, s, k); # This code is contributed by# Manish Shaw(manishshaw1)

## C#

 // C# Program all sequence of length s// starting with n such that difference// between consecutive element is less than k.using System;using System.Collections.Generic;using System.Linq;using System.Collections; class GFG {     // Recursive function to print all sequence    // of length s starting with n such that    // difference between consecutive element    // is less than k.    static void printSequence(ref List v, int n,                                   int s, int k)    {        // If size become 0, print the sequence.        if (s == 0) {            for (int i = 0; i < v.Count; i++)                Console.Write(v[i] + " ");            Console.WriteLine();            return;        }              // Increment the next element and make        // recursive call after inserting the        // (n + i) to the sequence.        for (int i = 0; i < k; i++) {            v.Add(n + i);            printSequence(ref v, n + i, s - 1, k);            v.RemoveAt(v.Count - 1);        }              // Decrementing the next element and'        // make recursive call after inserting        // the (n - i) to the sequence.        for (int i = 1; i < k; i++) {            v.Add(n - i);            printSequence(ref v, n - i, s - 1, k);            v.RemoveAt(v.Count - 1);        }    }          // Wrapper Function    static void wrapper(int n, int s, int k)    {        List v = new List();        v.Add(n);        printSequence(ref v, n, s - 1, k);    }          // Driven Program    public static void Main()    {        int n = 5, s = 3, k = 2;        wrapper(n, s, k);    }} // This code is contributed by Manish Shaw// (manishshaw1)



## Javascript



Output :

5 5 5
5 5 6
5 5 4
5 6 6
5 6 7
5 6 5
5 4 4
5 4 5
5 4 3

My Personal Notes arrow_drop_up