Given a binary tree, print nodes of odd level in any order. Root is considered at level 1.
For example consider the following tree 1 / \ 2 3 / \ \ 4 5 6 / \ / 7 8 9 Output 1 4 5 6
Method 1 (Recursive)
The idea is to pass initial level as odd and switch level flag in every recursive call. For every node, if odd flag is set, then print it.
C++
// Recursive C++ program to print odd level nodes #include <bits/stdc++.h> using namespace std; struct Node { int data; Node* left, *right; }; void printOddNodes(Node *root, bool isOdd = true ) { // If empty tree if (root == NULL) return ; // If current node is of odd level if (isOdd) cout << root->data << " " ; // Recur for children with isOdd // switched. printOddNodes(root->left, !isOdd); printOddNodes(root->right, !isOdd); } // Utility method to create a node struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Driver code int main() { struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); printOddNodes(root); return 0; } |
Java
// Recursive Java program to print odd level nodes class GfG { static class Node { int data; Node left, right; } static void printOddNodes(Node root, boolean isOdd) { // If empty tree if (root == null ) return ; // If current node is of odd level if (isOdd == true ) System.out.print(root.data + " " ); // Recur for children with isOdd // switched. printOddNodes(root.left, !isOdd); printOddNodes(root.right, !isOdd); } // Utility method to create a node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // Driver code public static void main(String[] args) { Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); printOddNodes(root, true ); } } |
Python3
# Recursive Python3 program to print # odd level nodes # Utility method to create a node class newNode: def __init__( self , data): self .data = data self .left = self .right = None def printOddNodes(root, isOdd = True ): # If empty tree if (root = = None ): return # If current node is of odd level if (isOdd): print (root.data, end = " " ) # Recur for children with isOdd # switched. printOddNodes(root.left, not isOdd) printOddNodes(root.right, not isOdd) # Driver code if __name__ = = '__main__' : root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) printOddNodes(root) # This code is contributed by PranchalK |
C#
using System; // Recursive C# program to print odd level nodes public class GfG { public class Node { public int data; public Node left, right; } public static void printOddNodes(Node root, bool isOdd) { // If empty tree if (root == null ) { return ; } // If current node is of odd level if (isOdd == true ) { Console.Write(root.data + " " ); } // Recur for children with isOdd // switched. printOddNodes(root.left, !isOdd); printOddNodes(root.right, !isOdd); } // Utility method to create a node public static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // Driver code public static void Main( string [] args) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); printOddNodes(root, true ); } } // This code is contributed by Shrikant13 |
Output:
1 4 5
Time complexity : O(n)
Method 2 (Iterative)
The above code prints nodes in preorder way. If we wish to print nodes level by level, we can use level order traversal. The idea is based on Print level order traversal line by line
We traverse nodes level by level. We switch odd level flag after every level.
C++
// Iterative C++ program to print odd level nodes #include <bits/stdc++.h> using namespace std; struct Node { int data; Node* left, *right; }; // Iterative method to do level order traversal line by line void printOddNodes(Node *root) { // Base Case if (root == NULL) return ; // Create an empty queue for level // order tarversal queue<Node *> q; // Enqueue root and initialize level as odd q.push(root); bool isOdd = true ; while (1) { // nodeCount (queue size) indicates // number of nodes at current level. int nodeCount = q.size(); if (nodeCount == 0) break ; // Dequeue all nodes of current level // and Enqueue all nodes of next level while (nodeCount > 0) { Node *node = q.front(); if (isOdd) cout << node->data << " " ; q.pop(); if (node->left != NULL) q.push(node->left); if (node->right != NULL) q.push(node->right); nodeCount--; } isOdd = !isOdd; } } // Utility method to create a node struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Driver code int main() { struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); printOddNodes(root); return 0; } |
Java
// Iterative Java program to print odd level nodes import java.util.*; class GfG { static class Node { int data; Node left, right; } // Iterative method to do level order traversal line by line static void printOddNodes(Node root) { // Base Case if (root == null ) return ; // Create an empty queue for level // order tarversal Queue<Node> q = new LinkedList<Node> (); // Enqueue root and initialize level as odd q.add(root); boolean isOdd = true ; while ( true ) { // nodeCount (queue size) indicates // number of nodes at current level. int nodeCount = q.size(); if (nodeCount == 0 ) break ; // Dequeue all nodes of current level // and Enqueue all nodes of next level while (nodeCount > 0 ) { Node node = q.peek(); if (isOdd == true ) System.out.print(node.data + " " ); q.remove(); if (node.left != null ) q.add(node.left); if (node.right != null ) q.add(node.right); nodeCount--; } isOdd = !isOdd; } } // Utility method to create a node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // Driver code public static void main(String[] args) { Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); printOddNodes(root); } } |
Python3
# Iterative Python3 program to prodd # level nodes # A Binary Tree Node # Utility function to create a # new tree Node class newNode: def __init__( self , data): self .data = data self .left = self .right = None # Iterative method to do level order # traversal line by line def printOddNodes(root) : # Base Case if (root = = None ): return # Create an empty queue for # level order tarversal q = [] # Enqueue root and initialize # level as odd q.append(root) isOdd = True while ( 1 ) : # nodeCount (queue size) indicates # number of nodes at current level. nodeCount = len (q) if (nodeCount = = 0 ) : break # Dequeue all nodes of current level # and Enqueue all nodes of next level while (nodeCount > 0 ): node = q[ 0 ] if (isOdd): print (node.data, end = " " ) q.pop( 0 ) if (node.left ! = None ) : q.append(node.left) if (node.right ! = None ) : q.append(node.right) nodeCount - = 1 isOdd = not isOdd # Driver Code if __name__ = = '__main__' : root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) printOddNodes(root) # This code is contributed # by SHUBHAMSINGH10 |
C#
// Iterative C# program to // print odd level nodes using System; using System.Collections.Generic; public class GfG { public class Node { public int data; public Node left, right; } // Iterative method to do level // order traversal line by line static void printOddNodes(Node root) { // Base Case if (root == null ) return ; // Create an empty queue for level // order tarversal Queue<Node> q = new Queue<Node> (); // Enqueue root and initialize level as odd q.Enqueue(root); bool isOdd = true ; while ( true ) { // nodeCount (queue size) indicates // number of nodes at current level. int nodeCount = q.Count; if (nodeCount == 0) break ; // Dequeue all nodes of current level // and Enqueue all nodes of next level while (nodeCount > 0) { Node node = q.Peek(); if (isOdd == true ) Console.Write(node.data + " " ); q.Dequeue(); if (node.left != null ) q.Enqueue(node.left); if (node.right != null ) q.Enqueue(node.right); nodeCount--; } isOdd = !isOdd; } } // Utility method to create a node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // Driver code public static void Main(String[] args) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); printOddNodes(root); } } // This code has been contributed // by 29AjayKumar |
Output:
1 4 5
Time complexity : O(n)
This article is contributed by Pranav. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.