Skip to content
Related Articles

Related Articles

Improve Article

Print Lower Hessenberg matrix of order N

  • Last Updated : 03 May, 2021

Given a positive integer N, the task is to print the Lower Hessenberg matrix of order N which includes any one-digit random positive integer as its non-zero elements. 
Lower Hessenberg matrix is a square matrix in which all of its elements above the super-diagonal are zero. In mathematical term mat[i][j] = 0 for all j > i + 1.
Examples: 
 

Input: N = 3 
Output: 
1 2 0 
1 3 4 
2 3 4
Input: N = 4 
Output: 
1 2 0 0 
1 3 4 0 
2 3 4 2 
2 3 1 4 
 

 

Approach: For printing a Lower Hessenberg matrix with one-digit positive elements print zero for all cells of the matrix where j > i + 1 and any single-digit random number with help of rand() function.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the Lower Hessenberg
// matrix of order n
void LowerHessenbergMatrix(int n)
{
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
 
            // If element is above super-diagonal
            // then print 0
            if (j > i + 1)
                cout << '0' << " ";
 
            // Print a random digit for
            // every non-zero element
            else
                cout << rand() % 10 << " ";
        }
        cout << "\n";
    }
}
 
// Driver code
int main()
{
    int n = 4;
    LowerHessenbergMatrix(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to print the Lower Hessenberg
// matrix of order n
static void LowerHessenbergMatrix(int n)
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
 
            // If element is above super-diagonal
            // then print 0
            if (j > i + 1)
                System.out.print('0' + " ");
 
            // Print a random digit for
            // every non-zero element
            else
            {
                System.out.printf("%.0f",Math.random() * 10);
                System.out.print(" ");
            }
        }
        System.out.println("\n");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 4;
    LowerHessenbergMatrix(n);
}
}
 
/* This code is contributed by PrinciRaj1992 */

Python3




# Python3 implementation of the approach
import random
 
# Function to print the Upper Hessenberg
# matrix of order n
def UpperHessenbergMatrix(n):
 
    for i in range(1, n + 1):
 
        for j in range(1, n + 1):
 
        # If element is below sub-diagonal
        # then pr0
            if (j > i + 1):
                print('0', end = " ")
 
            # Pra random digit for
            # every non-zero element
            else:
                print(random.randint(1, 10),
                                 end = " ")
        print()
 
# Driver code
n = 4;
UpperHessenbergMatrix(n)
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to print the Lower Hessenberg
    // matrix of order n
    static void LowerHessenbergMatrix(int n)
    {
        Random rand = new Random();
         
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
     
                // If element is above super-diagonal
                // then print 0
                if (j > i + 1)
                    Console.Write(0 + " ");
     
                // Print a random digit for
                // every non-zero element
                else
                    Console.Write(rand.Next(1, 10) + " ");
            }
            Console.WriteLine();
        }
    }
     
    // Driver code
    static public void Main ()
    {
        int n = 4;
        LowerHessenbergMatrix(n);
    }
}   
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
 
// Javascript implementation of the approach
 
// Function to print the Lower Hessenberg
// matrix of order n
function LowerHessenbergMatrix(n)
{
    for (var i = 1; i <= n; i++) {
        for (var j = 1; j <= n; j++) {
 
            // If element is above super-diagonal
            // then print 0
            if (j > i + 1)
                document.write( '0' + " ");
 
            // Print a random digit for
            // every non-zero element
            else
                document.write(Math.floor(Math.random() * 10) + " ");
        }
        document.write( "<br>");
    }
}
 
// Driver code
var n = 4;
LowerHessenbergMatrix(n);
 
 
</script>
Output: 
3 6 0 0 
7 5 3 0 
5 6 2 9 
1 2 7 0

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :